New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > albidv | GIF version |
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
albidv | ⊢ (φ → (∀xψ ↔ ∀xχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1616 | . 2 ⊢ (φ → ∀xφ) | |
2 | albidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | albidh 1590 | 1 ⊢ (φ → (∀xψ ↔ ∀xχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 2albidv 1627 ax11wdemo 1723 ax11vALT 2097 sbcom2 2114 ax10-16 2190 eujust 2206 eujustALT 2207 euf 2210 mo 2226 axext3 2336 bm1.1 2338 eqeq1 2359 nfceqdf 2489 ralbidv2 2637 alexeq 2969 pm13.183 2980 eqeu 3008 mo2icl 3016 euind 3024 reuind 3040 sbcal 3094 sbcalg 3095 sbcabel 3124 csbiebg 3176 ssconb 3400 reldisj 3595 sbcss 3661 elint 3933 iota5 4360 nnadjoin 4521 sfintfin 4533 tfinnn 4535 spfinsfincl 4540 spfininduct 4541 ssrel 4845 funimass4 5369 dffo3 5423 dff13 5472 fnfullfunlem1 5857 frd 5923 |
Copyright terms: Public domain | W3C validator |