New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cgsex2g | GIF version |
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cgsex2g.1 | ⊢ ((x = A ∧ y = B) → χ) |
cgsex2g.2 | ⊢ (χ → (φ ↔ ψ)) |
Ref | Expression |
---|---|
cgsex2g | ⊢ ((A ∈ V ∧ B ∈ W) → (∃x∃y(χ ∧ φ) ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsex2g.2 | . . . 4 ⊢ (χ → (φ ↔ ψ)) | |
2 | 1 | biimpa 470 | . . 3 ⊢ ((χ ∧ φ) → ψ) |
3 | 2 | exlimivv 1635 | . 2 ⊢ (∃x∃y(χ ∧ φ) → ψ) |
4 | elisset 2870 | . . . . . 6 ⊢ (A ∈ V → ∃x x = A) | |
5 | elisset 2870 | . . . . . 6 ⊢ (B ∈ W → ∃y y = B) | |
6 | 4, 5 | anim12i 549 | . . . . 5 ⊢ ((A ∈ V ∧ B ∈ W) → (∃x x = A ∧ ∃y y = B)) |
7 | eeanv 1913 | . . . . 5 ⊢ (∃x∃y(x = A ∧ y = B) ↔ (∃x x = A ∧ ∃y y = B)) | |
8 | 6, 7 | sylibr 203 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ W) → ∃x∃y(x = A ∧ y = B)) |
9 | cgsex2g.1 | . . . . 5 ⊢ ((x = A ∧ y = B) → χ) | |
10 | 9 | 2eximi 1577 | . . . 4 ⊢ (∃x∃y(x = A ∧ y = B) → ∃x∃yχ) |
11 | 8, 10 | syl 15 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W) → ∃x∃yχ) |
12 | 1 | biimprcd 216 | . . . . 5 ⊢ (ψ → (χ → φ)) |
13 | 12 | ancld 536 | . . . 4 ⊢ (ψ → (χ → (χ ∧ φ))) |
14 | 13 | 2eximdv 1624 | . . 3 ⊢ (ψ → (∃x∃yχ → ∃x∃y(χ ∧ φ))) |
15 | 11, 14 | syl5com 26 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → (ψ → ∃x∃y(χ ∧ φ))) |
16 | 3, 15 | impbid2 195 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (∃x∃y(χ ∧ φ) ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |