NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2eximi GIF version

Theorem 2eximi 1577
Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
Hypothesis
Ref Expression
eximi.1 (φψ)
Assertion
Ref Expression
2eximi (xyφxyψ)

Proof of Theorem 2eximi
StepHypRef Expression
1 eximi.1 . . 3 (φψ)
21eximi 1576 . 2 (yφyψ)
32eximi 1576 1 (xyφxyψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  excomimOLD  1858  2eu6  2289  cgsex2g  2892  cgsex4g  2893  vtocl2  2911  vtocl3  2912  mosubopt  4613  ssoprab2i  5581  ce0nnulb  6183
  Copyright terms: Public domain W3C validator