![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > ce0nnulb | GIF version |
Description: Cardinal exponentiation is non-empty iff the two sets raised to zero are non-empty. Theorem XI.2.47 of [Rosser] p. 384. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
ce0nnulb | ⊢ ((N ∈ NC ∧ M ∈ NC ) → (((N ↑c 0c) ≠ ∅ ∧ (M ↑c 0c) ≠ ∅) ↔ (N ↑c M) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ce0nnul 6177 | . . . 4 ⊢ (N ∈ NC → ((N ↑c 0c) ≠ ∅ ↔ ∃a℘1a ∈ N)) | |
2 | ce0nnul 6177 | . . . 4 ⊢ (M ∈ NC → ((M ↑c 0c) ≠ ∅ ↔ ∃b℘1b ∈ M)) | |
3 | 1, 2 | bi2anan9 843 | . . 3 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (((N ↑c 0c) ≠ ∅ ∧ (M ↑c 0c) ≠ ∅) ↔ (∃a℘1a ∈ N ∧ ∃b℘1b ∈ M))) |
4 | eeanv 1913 | . . 3 ⊢ (∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M) ↔ (∃a℘1a ∈ N ∧ ∃b℘1b ∈ M)) | |
5 | 3, 4 | syl6bbr 254 | . 2 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (((N ↑c 0c) ≠ ∅ ∧ (M ↑c 0c) ≠ ∅) ↔ ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M))) |
6 | ncseqnc 6128 | . . . . . 6 ⊢ (N ∈ NC → (N = Nc ℘1a ↔ ℘1a ∈ N)) | |
7 | ncseqnc 6128 | . . . . . 6 ⊢ (M ∈ NC → (M = Nc ℘1b ↔ ℘1b ∈ M)) | |
8 | 6, 7 | bi2anan9 843 | . . . . 5 ⊢ ((N ∈ NC ∧ M ∈ NC ) → ((N = Nc ℘1a ∧ M = Nc ℘1b) ↔ (℘1a ∈ N ∧ ℘1b ∈ M))) |
9 | vex 2862 | . . . . . . . 8 ⊢ a ∈ V | |
10 | vex 2862 | . . . . . . . 8 ⊢ b ∈ V | |
11 | 9, 10 | cenc 6181 | . . . . . . 7 ⊢ ( Nc ℘1a ↑c Nc ℘1b) = Nc (a ↑m b) |
12 | ovex 5551 | . . . . . . . . 9 ⊢ (a ↑m b) ∈ V | |
13 | 12 | ncid 6123 | . . . . . . . 8 ⊢ (a ↑m b) ∈ Nc (a ↑m b) |
14 | ne0i 3556 | . . . . . . . 8 ⊢ ((a ↑m b) ∈ Nc (a ↑m b) → Nc (a ↑m b) ≠ ∅) | |
15 | 13, 14 | ax-mp 8 | . . . . . . 7 ⊢ Nc (a ↑m b) ≠ ∅ |
16 | 11, 15 | eqnetri 2533 | . . . . . 6 ⊢ ( Nc ℘1a ↑c Nc ℘1b) ≠ ∅ |
17 | oveq12 5532 | . . . . . . 7 ⊢ ((N = Nc ℘1a ∧ M = Nc ℘1b) → (N ↑c M) = ( Nc ℘1a ↑c Nc ℘1b)) | |
18 | 17 | neeq1d 2529 | . . . . . 6 ⊢ ((N = Nc ℘1a ∧ M = Nc ℘1b) → ((N ↑c M) ≠ ∅ ↔ ( Nc ℘1a ↑c Nc ℘1b) ≠ ∅)) |
19 | 16, 18 | mpbiri 224 | . . . . 5 ⊢ ((N = Nc ℘1a ∧ M = Nc ℘1b) → (N ↑c M) ≠ ∅) |
20 | 8, 19 | syl6bir 220 | . . . 4 ⊢ ((N ∈ NC ∧ M ∈ NC ) → ((℘1a ∈ N ∧ ℘1b ∈ M) → (N ↑c M) ≠ ∅)) |
21 | 20 | exlimdvv 1637 | . . 3 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M) → (N ↑c M) ≠ ∅)) |
22 | n0 3559 | . . . 4 ⊢ ((N ↑c M) ≠ ∅ ↔ ∃g g ∈ (N ↑c M)) | |
23 | elce 6175 | . . . . . 6 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (g ∈ (N ↑c M) ↔ ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a ↑m b)))) | |
24 | 3simpa 952 | . . . . . . 7 ⊢ ((℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a ↑m b)) → (℘1a ∈ N ∧ ℘1b ∈ M)) | |
25 | 24 | 2eximi 1577 | . . . . . 6 ⊢ (∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M ∧ g ≈ (a ↑m b)) → ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M)) |
26 | 23, 25 | syl6bi 219 | . . . . 5 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (g ∈ (N ↑c M) → ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M))) |
27 | 26 | exlimdv 1636 | . . . 4 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (∃g g ∈ (N ↑c M) → ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M))) |
28 | 22, 27 | syl5bi 208 | . . 3 ⊢ ((N ∈ NC ∧ M ∈ NC ) → ((N ↑c M) ≠ ∅ → ∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M))) |
29 | 21, 28 | impbid 183 | . 2 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (∃a∃b(℘1a ∈ N ∧ ℘1b ∈ M) ↔ (N ↑c M) ≠ ∅)) |
30 | 5, 29 | bitrd 244 | 1 ⊢ ((N ∈ NC ∧ M ∈ NC ) → (((N ↑c 0c) ≠ ∅ ∧ (M ↑c 0c) ≠ ∅) ↔ (N ↑c M) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2516 ∅c0 3550 ℘1cpw1 4135 0cc0c 4374 class class class wbr 4639 (class class class)co 5525 ↑m cmap 5999 ≈ cen 6028 NC cncs 6088 Nc cnc 6091 ↑c cce 6096 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-ov 5526 df-oprab 5528 df-mpt 5652 df-mpt2 5654 df-txp 5736 df-compose 5748 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-pw1fn 5766 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-map 6001 df-en 6029 df-ncs 6098 df-nc 6101 df-ce 6106 |
This theorem is referenced by: ceclb 6183 |
Copyright terms: Public domain | W3C validator |