Proof of Theorem vtocl3
| Step | Hyp | Ref
| Expression |
| 1 | | vtocl3.1 |
. . . . . . 7
⊢ A ∈
V |
| 2 | 1 | isseti 2866 |
. . . . . 6
⊢ ∃x x = A |
| 3 | | vtocl3.2 |
. . . . . . 7
⊢ B ∈
V |
| 4 | 3 | isseti 2866 |
. . . . . 6
⊢ ∃y y = B |
| 5 | | vtocl3.3 |
. . . . . . 7
⊢ C ∈
V |
| 6 | 5 | isseti 2866 |
. . . . . 6
⊢ ∃z z = C |
| 7 | | eeeanv 1914 |
. . . . . . 7
⊢ (∃x∃y∃z(x = A ∧ y = B ∧ z = C) ↔
(∃x
x = A
∧ ∃y y = B ∧ ∃z z = C)) |
| 8 | | vtocl3.4 |
. . . . . . . . . 10
⊢ ((x = A ∧ y = B ∧ z = C) →
(φ ↔ ψ)) |
| 9 | 8 | biimpd 198 |
. . . . . . . . 9
⊢ ((x = A ∧ y = B ∧ z = C) →
(φ → ψ)) |
| 10 | 9 | eximi 1576 |
. . . . . . . 8
⊢ (∃z(x = A ∧ y = B ∧ z = C) →
∃z(φ → ψ)) |
| 11 | 10 | 2eximi 1577 |
. . . . . . 7
⊢ (∃x∃y∃z(x = A ∧ y = B ∧ z = C) →
∃x∃y∃z(φ → ψ)) |
| 12 | 7, 11 | sylbir 204 |
. . . . . 6
⊢ ((∃x x = A ∧ ∃y y = B ∧ ∃z z = C) →
∃x∃y∃z(φ → ψ)) |
| 13 | 2, 4, 6, 12 | mp3an 1277 |
. . . . 5
⊢ ∃x∃y∃z(φ → ψ) |
| 14 | | 19.36v 1896 |
. . . . . 6
⊢ (∃z(φ → ψ) ↔ (∀zφ → ψ)) |
| 15 | 14 | 2exbii 1583 |
. . . . 5
⊢ (∃x∃y∃z(φ → ψ) ↔ ∃x∃y(∀zφ → ψ)) |
| 16 | 13, 15 | mpbi 199 |
. . . 4
⊢ ∃x∃y(∀zφ → ψ) |
| 17 | | 19.36v 1896 |
. . . . 5
⊢ (∃y(∀zφ → ψ) ↔ (∀y∀zφ → ψ)) |
| 18 | 17 | exbii 1582 |
. . . 4
⊢ (∃x∃y(∀zφ → ψ) ↔ ∃x(∀y∀zφ → ψ)) |
| 19 | 16, 18 | mpbi 199 |
. . 3
⊢ ∃x(∀y∀zφ → ψ) |
| 20 | 19 | 19.36aiv 1897 |
. 2
⊢ (∀x∀y∀zφ → ψ) |
| 21 | | vtocl3.5 |
. . 3
⊢ φ |
| 22 | 21 | gen2 1547 |
. 2
⊢ ∀y∀zφ |
| 23 | 20, 22 | mpg 1548 |
1
⊢ ψ |