| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3anbi2d | GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| 3anbi2d | ⊢ (φ → ((θ ∧ ψ ∧ τ) ↔ (θ ∧ χ ∧ τ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 228 | . 2 ⊢ (φ → (θ ↔ θ)) | |
| 2 | 3anbi1d.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 1, 2 | 3anbi12d 1253 | 1 ⊢ (φ → ((θ ∧ ψ ∧ τ) ↔ (θ ∧ χ ∧ τ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: vtocl3gaf 2924 opkelins2kg 4252 opkelins3kg 4253 opkelsikg 4265 sikss1c1c 4268 brsi 4762 brsnsi 5774 nenpw1pwlem2 6086 ovce 6173 |
| Copyright terms: Public domain | W3C validator |