New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biidd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (φ → (ψ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 227 | . 2 ⊢ (ψ ↔ ψ) | |
2 | 1 | a1i 10 | 1 ⊢ (φ → (ψ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3anbi12d 1253 3anbi13d 1254 3anbi23d 1255 3anbi1d 1256 3anbi2d 1257 3anbi3d 1258 had1 1402 spnfwOLD 1692 spvwOLD 1695 exdistrf 1971 nfald2 1972 sb6x 2029 a16gALT 2049 ax11 2155 a16g-o 2186 ax11indalem 2197 ax11inda2ALT 2198 rr19.3v 2981 rr19.28v 2982 moeq3 3014 euxfr2 3022 dfif3 3673 otkelins2kg 4254 otkelins3kg 4255 copsexg 4608 br1stg 4731 dmsnopg 5067 rnsnop 5076 opbr1st 5502 opbr2nd 5503 ov6g 5601 ovg 5602 pmvalg 6011 |
Copyright terms: Public domain | W3C validator |