NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3anbi3d GIF version

Theorem 3anbi3d 1258
Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1d.1 (φ → (ψχ))
Assertion
Ref Expression
3anbi3d (φ → ((θ τ ψ) ↔ (θ τ χ)))

Proof of Theorem 3anbi3d
StepHypRef Expression
1 biidd 228 . 2 (φ → (θθ))
2 3anbi1d.1 . 2 (φ → (ψχ))
31, 23anbi13d 1254 1 (φ → ((θ τ ψ) ↔ (θ τ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  ceqsex3v  2898  ceqsex4v  2899  ceqsex8v  2901  vtocl3gaf  2924  mob  3019  ins2keq  4219  ins3keq  4220  sikeq  4242  ceex  6175  elce  6176
  Copyright terms: Public domain W3C validator