| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3anbi3d | GIF version | ||
| Description: Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1d.1 | ⊢ (φ → (ψ ↔ χ)) |
| Ref | Expression |
|---|---|
| 3anbi3d | ⊢ (φ → ((θ ∧ τ ∧ ψ) ↔ (θ ∧ τ ∧ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 228 | . 2 ⊢ (φ → (θ ↔ θ)) | |
| 2 | 3anbi1d.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
| 3 | 1, 2 | 3anbi13d 1254 | 1 ⊢ (φ → ((θ ∧ τ ∧ ψ) ↔ (θ ∧ τ ∧ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: ceqsex3v 2898 ceqsex4v 2899 ceqsex8v 2901 vtocl3gaf 2924 mob 3019 ins2keq 4219 ins3keq 4220 sikeq 4242 ceex 6175 elce 6176 |
| Copyright terms: Public domain | W3C validator |