NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3bitr3g GIF version

Theorem 3bitr3g 278
Description: More general version of 3bitr3i 266. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.)
Hypotheses
Ref Expression
3bitr3g.1 (φ → (ψχ))
3bitr3g.2 (ψθ)
3bitr3g.3 (χτ)
Assertion
Ref Expression
3bitr3g (φ → (θτ))

Proof of Theorem 3bitr3g
StepHypRef Expression
1 3bitr3g.2 . . 3 (ψθ)
2 3bitr3g.1 . . 3 (φ → (ψχ))
31, 2syl5bbr 250 . 2 (φ → (θχ))
4 3bitr3g.3 . 2 (χτ)
53, 4syl6bb 252 1 (φ → (θτ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  notbid  285  cador  1391  equequ2  1686  dfsbcq2  3050  unineq  3506  iindif2  4036  isoini  5498  brcupg  5815  enprmaplem3  6079  nmembers1lem3  6271
  Copyright terms: Public domain W3C validator