![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 3bitr3g | GIF version |
Description: More general version of 3bitr3i 266. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
3bitr3g.1 | ⊢ (φ → (ψ ↔ χ)) |
3bitr3g.2 | ⊢ (ψ ↔ θ) |
3bitr3g.3 | ⊢ (χ ↔ τ) |
Ref | Expression |
---|---|
3bitr3g | ⊢ (φ → (θ ↔ τ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3g.2 | . . 3 ⊢ (ψ ↔ θ) | |
2 | 3bitr3g.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
3 | 1, 2 | syl5bbr 250 | . 2 ⊢ (φ → (θ ↔ χ)) |
4 | 3bitr3g.3 | . 2 ⊢ (χ ↔ τ) | |
5 | 3, 4 | syl6bb 252 | 1 ⊢ (φ → (θ ↔ τ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: notbid 285 cador 1391 equequ2 1686 dfsbcq2 3049 unineq 3505 iindif2 4035 isoini 5497 brcupg 5814 enprmaplem3 6078 nmembers1lem3 6270 |
Copyright terms: Public domain | W3C validator |