Step | Hyp | Ref
| Expression |
1 | | eleq2 2414 |
. . . . . . 7
⊢ ((A ∩ C) =
(B ∩ C) → (x
∈ (A
∩ C) ↔ x ∈ (B ∩ C))) |
2 | | elin 3220 |
. . . . . . 7
⊢ (x ∈ (A ∩ C)
↔ (x ∈ A ∧ x ∈ C)) |
3 | | elin 3220 |
. . . . . . 7
⊢ (x ∈ (B ∩ C)
↔ (x ∈ B ∧ x ∈ C)) |
4 | 1, 2, 3 | 3bitr3g 278 |
. . . . . 6
⊢ ((A ∩ C) =
(B ∩ C) → ((x
∈ A ∧ x ∈ C) ↔
(x ∈
B ∧
x ∈
C))) |
5 | | iba 489 |
. . . . . . 7
⊢ (x ∈ C → (x
∈ A
↔ (x ∈ A ∧ x ∈ C))) |
6 | | iba 489 |
. . . . . . 7
⊢ (x ∈ C → (x
∈ B
↔ (x ∈ B ∧ x ∈ C))) |
7 | 5, 6 | bibi12d 312 |
. . . . . 6
⊢ (x ∈ C → ((x
∈ A
↔ x ∈ B) ↔
((x ∈
A ∧
x ∈
C) ↔ (x ∈ B ∧ x ∈ C)))) |
8 | 4, 7 | syl5ibr 212 |
. . . . 5
⊢ (x ∈ C → ((A
∩ C) = (B ∩ C)
→ (x ∈ A ↔
x ∈
B))) |
9 | 8 | adantld 453 |
. . . 4
⊢ (x ∈ C → (((A
∪ C) = (B ∪ C) ∧ (A ∩
C) = (B
∩ C)) → (x ∈ A ↔ x ∈ B))) |
10 | | uncom 3409 |
. . . . . . . . 9
⊢ (A ∪ C) =
(C ∪ A) |
11 | | uncom 3409 |
. . . . . . . . 9
⊢ (B ∪ C) =
(C ∪ B) |
12 | 10, 11 | eqeq12i 2366 |
. . . . . . . 8
⊢ ((A ∪ C) =
(B ∪ C) ↔ (C
∪ A) = (C ∪ B)) |
13 | | eleq2 2414 |
. . . . . . . 8
⊢ ((C ∪ A) =
(C ∪ B) → (x
∈ (C
∪ A) ↔ x ∈ (C ∪ B))) |
14 | 12, 13 | sylbi 187 |
. . . . . . 7
⊢ ((A ∪ C) =
(B ∪ C) → (x
∈ (C
∪ A) ↔ x ∈ (C ∪ B))) |
15 | | elun 3221 |
. . . . . . 7
⊢ (x ∈ (C ∪ A)
↔ (x ∈ C ∨ x ∈ A)) |
16 | | elun 3221 |
. . . . . . 7
⊢ (x ∈ (C ∪ B)
↔ (x ∈ C ∨ x ∈ B)) |
17 | 14, 15, 16 | 3bitr3g 278 |
. . . . . 6
⊢ ((A ∪ C) =
(B ∪ C) → ((x
∈ C ∨ x ∈ A) ↔
(x ∈
C ∨
x ∈
B))) |
18 | | biorf 394 |
. . . . . . 7
⊢ (¬ x ∈ C → (x
∈ A
↔ (x ∈ C ∨ x ∈ A))) |
19 | | biorf 394 |
. . . . . . 7
⊢ (¬ x ∈ C → (x
∈ B
↔ (x ∈ C ∨ x ∈ B))) |
20 | 18, 19 | bibi12d 312 |
. . . . . 6
⊢ (¬ x ∈ C → ((x
∈ A
↔ x ∈ B) ↔
((x ∈
C ∨
x ∈
A) ↔ (x ∈ C ∨ x ∈ B)))) |
21 | 17, 20 | syl5ibr 212 |
. . . . 5
⊢ (¬ x ∈ C → ((A
∪ C) = (B ∪ C)
→ (x ∈ A ↔
x ∈
B))) |
22 | 21 | adantrd 454 |
. . . 4
⊢ (¬ x ∈ C → (((A
∪ C) = (B ∪ C) ∧ (A ∩
C) = (B
∩ C)) → (x ∈ A ↔ x ∈ B))) |
23 | 9, 22 | pm2.61i 156 |
. . 3
⊢ (((A ∪ C) =
(B ∪ C) ∧ (A ∩ C) =
(B ∩ C)) → (x
∈ A
↔ x ∈ B)) |
24 | 23 | eqrdv 2351 |
. 2
⊢ (((A ∪ C) =
(B ∪ C) ∧ (A ∩ C) =
(B ∩ C)) → A =
B) |
25 | | uneq1 3412 |
. . 3
⊢ (A = B →
(A ∪ C) = (B ∪
C)) |
26 | | ineq1 3451 |
. . 3
⊢ (A = B →
(A ∩ C) = (B ∩
C)) |
27 | 25, 26 | jca 518 |
. 2
⊢ (A = B →
((A ∪ C) = (B ∪
C) ∧
(A ∩ C) = (B ∩
C))) |
28 | 24, 27 | impbii 180 |
1
⊢ (((A ∪ C) =
(B ∪ C) ∧ (A ∩ C) =
(B ∩ C)) ↔ A =
B) |