Step | Hyp | Ref
| Expression |
1 | | elin 3220 |
. . . . 5
⊢ (y ∈ (B ∩ (◡S
“ {(H ‘D)})) ↔ (y
∈ B ∧ y ∈ (◡S
“ {(H ‘D)}))) |
2 | | eliniseg 5021 |
. . . . . 6
⊢ (y ∈ (◡S
“ {(H ‘D)}) ↔ yS(H ‘D)) |
3 | 2 | anbi2i 675 |
. . . . 5
⊢ ((y ∈ B ∧ y ∈ (◡S
“ {(H ‘D)})) ↔ (y
∈ B ∧ yS(H
‘D))) |
4 | 1, 3 | bitri 240 |
. . . 4
⊢ (y ∈ (B ∩ (◡S
“ {(H ‘D)})) ↔ (y
∈ B ∧ yS(H
‘D))) |
5 | | isof1o 5489 |
. . . . . . . . . . 11
⊢ (H Isom R,
S (A,
B) → H:A–1-1-onto→B) |
6 | | f1ofo 5294 |
. . . . . . . . . . 11
⊢ (H:A–1-1-onto→B →
H:A–onto→B) |
7 | 5, 6 | syl 15 |
. . . . . . . . . 10
⊢ (H Isom R,
S (A,
B) → H:A–onto→B) |
8 | | forn 5273 |
. . . . . . . . . 10
⊢ (H:A–onto→B
→ ran H = B) |
9 | 7, 8 | syl 15 |
. . . . . . . . 9
⊢ (H Isom R,
S (A,
B) → ran H = B) |
10 | 9 | eleq2d 2420 |
. . . . . . . 8
⊢ (H Isom R,
S (A,
B) → (y ∈ ran H ↔ y ∈ B)) |
11 | | f1ofn 5289 |
. . . . . . . . . 10
⊢ (H:A–1-1-onto→B →
H Fn A) |
12 | 5, 11 | syl 15 |
. . . . . . . . 9
⊢ (H Isom R,
S (A,
B) → H Fn A) |
13 | | fvelrnb 5366 |
. . . . . . . . 9
⊢ (H Fn A →
(y ∈ ran
H ↔ ∃x ∈ A (H ‘x) =
y)) |
14 | 12, 13 | syl 15 |
. . . . . . . 8
⊢ (H Isom R,
S (A,
B) → (y ∈ ran H ↔ ∃x ∈ A (H ‘x) =
y)) |
15 | 10, 14 | bitr3d 246 |
. . . . . . 7
⊢ (H Isom R,
S (A,
B) → (y ∈ B ↔ ∃x ∈ A (H ‘x) =
y)) |
16 | 15 | anbi1d 685 |
. . . . . 6
⊢ (H Isom R,
S (A,
B) → ((y ∈ B ∧ yS(H ‘D))
↔ (∃x ∈ A (H
‘x) = y ∧ yS(H ‘D)))) |
17 | 16 | adantr 451 |
. . . . 5
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → ((y ∈ B ∧ yS(H ‘D))
↔ (∃x ∈ A (H
‘x) = y ∧ yS(H ‘D)))) |
18 | | elin 3220 |
. . . . . . . . . . 11
⊢ (x ∈ (A ∩ (◡R
“ {D})) ↔ (x ∈ A ∧ x ∈ (◡R
“ {D}))) |
19 | | eliniseg 5021 |
. . . . . . . . . . . 12
⊢ (x ∈ (◡R
“ {D}) ↔ xRD) |
20 | 19 | anbi2i 675 |
. . . . . . . . . . 11
⊢ ((x ∈ A ∧ x ∈ (◡R
“ {D})) ↔ (x ∈ A ∧ xRD)) |
21 | 18, 20 | bitri 240 |
. . . . . . . . . 10
⊢ (x ∈ (A ∩ (◡R
“ {D})) ↔ (x ∈ A ∧ xRD)) |
22 | 21 | anbi1i 676 |
. . . . . . . . 9
⊢ ((x ∈ (A ∩ (◡R
“ {D})) ∧ xHy) ↔
((x ∈
A ∧
xRD) ∧ xHy)) |
23 | | anass 630 |
. . . . . . . . 9
⊢ (((x ∈ A ∧ xRD) ∧ xHy) ↔ (x
∈ A ∧ (xRD ∧ xHy))) |
24 | 22, 23 | bitri 240 |
. . . . . . . 8
⊢ ((x ∈ (A ∩ (◡R
“ {D})) ∧ xHy) ↔
(x ∈
A ∧
(xRD ∧ xHy))) |
25 | | fnbrfvb 5359 |
. . . . . . . . . . . . . . . . 17
⊢ ((H Fn A ∧ x ∈ A) →
((H ‘x) = y ↔
xHy)) |
26 | 12, 25 | sylan 457 |
. . . . . . . . . . . . . . . 16
⊢ ((H Isom R,
S (A,
B) ∧
x ∈
A) → ((H ‘x) =
y ↔ xHy)) |
27 | 26 | adantrr 697 |
. . . . . . . . . . . . . . 15
⊢ ((H Isom R,
S (A,
B) ∧
(x ∈
A ∧
D ∈
A)) → ((H ‘x) =
y ↔ xHy)) |
28 | 27 | bicomd 192 |
. . . . . . . . . . . . . 14
⊢ ((H Isom R,
S (A,
B) ∧
(x ∈
A ∧
D ∈
A)) → (xHy ↔ (H
‘x) = y)) |
29 | | isorel 5490 |
. . . . . . . . . . . . . 14
⊢ ((H Isom R,
S (A,
B) ∧
(x ∈
A ∧
D ∈
A)) → (xRD ↔ (H
‘x)S(H
‘D))) |
30 | 28, 29 | anbi12d 691 |
. . . . . . . . . . . . 13
⊢ ((H Isom R,
S (A,
B) ∧
(x ∈
A ∧
D ∈
A)) → ((xHy ∧ xRD) ↔ ((H
‘x) = y ∧ (H ‘x)S(H ‘D)))) |
31 | | ancom 437 |
. . . . . . . . . . . . 13
⊢ ((xHy ∧ xRD) ↔ (xRD ∧ xHy)) |
32 | | breq1 4643 |
. . . . . . . . . . . . . 14
⊢ ((H ‘x) =
y → ((H ‘x)S(H ‘D)
↔ yS(H
‘D))) |
33 | 32 | pm5.32i 618 |
. . . . . . . . . . . . 13
⊢ (((H ‘x) =
y ∧
(H ‘x)S(H ‘D))
↔ ((H ‘x) = y ∧ yS(H
‘D))) |
34 | 30, 31, 33 | 3bitr3g 278 |
. . . . . . . . . . . 12
⊢ ((H Isom R,
S (A,
B) ∧
(x ∈
A ∧
D ∈
A)) → ((xRD ∧ xHy) ↔ ((H
‘x) = y ∧ yS(H ‘D)))) |
35 | 34 | exp32 588 |
. . . . . . . . . . 11
⊢ (H Isom R,
S (A,
B) → (x ∈ A → (D
∈ A
→ ((xRD ∧ xHy) ↔
((H ‘x) = y ∧ yS(H
‘D)))))) |
36 | 35 | com23 72 |
. . . . . . . . . 10
⊢ (H Isom R,
S (A,
B) → (D ∈ A → (x
∈ A
→ ((xRD ∧ xHy) ↔
((H ‘x) = y ∧ yS(H
‘D)))))) |
37 | 36 | imp 418 |
. . . . . . . . 9
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → (x ∈ A → ((xRD ∧ xHy) ↔ ((H
‘x) = y ∧ yS(H ‘D))))) |
38 | 37 | pm5.32d 620 |
. . . . . . . 8
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → ((x ∈ A ∧ (xRD ∧ xHy)) ↔ (x
∈ A ∧ ((H
‘x) = y ∧ yS(H ‘D))))) |
39 | 24, 38 | syl5bb 248 |
. . . . . . 7
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → ((x ∈ (A ∩ (◡R
“ {D})) ∧ xHy) ↔
(x ∈
A ∧
((H ‘x) = y ∧ yS(H
‘D))))) |
40 | 39 | rexbidv2 2638 |
. . . . . 6
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → (∃x ∈ (A ∩
(◡R
“ {D}))xHy ↔ ∃x ∈ A ((H ‘x) =
y ∧
yS(H
‘D)))) |
41 | | r19.41v 2765 |
. . . . . 6
⊢ (∃x ∈ A ((H ‘x) =
y ∧
yS(H
‘D)) ↔ (∃x ∈ A (H ‘x) =
y ∧
yS(H
‘D))) |
42 | 40, 41 | syl6bb 252 |
. . . . 5
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → (∃x ∈ (A ∩
(◡R
“ {D}))xHy ↔ (∃x ∈ A (H ‘x) =
y ∧
yS(H
‘D)))) |
43 | 17, 42 | bitr4d 247 |
. . . 4
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → ((y ∈ B ∧ yS(H ‘D))
↔ ∃x ∈ (A ∩ (◡R
“ {D}))xHy)) |
44 | 4, 43 | syl5bb 248 |
. . 3
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → (y ∈ (B ∩ (◡S
“ {(H ‘D)})) ↔ ∃x ∈ (A ∩
(◡R
“ {D}))xHy)) |
45 | 44 | abbi2dv 2469 |
. 2
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → (B ∩ (◡S
“ {(H ‘D)})) = {y ∣ ∃x ∈ (A ∩ (◡R
“ {D}))xHy}) |
46 | | df-ima 4728 |
. 2
⊢ (H “ (A
∩ (◡R “ {D})))
= {y ∣
∃x ∈ (A ∩
(◡R
“ {D}))xHy} |
47 | 45, 46 | syl6reqr 2404 |
1
⊢ ((H Isom R,
S (A,
B) ∧
D ∈
A) → (H “ (A
∩ (◡R “ {D})))
= (B ∩ (◡S
“ {(H ‘D)}))) |