![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > dfsbcq2 | GIF version |
Description: This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1649 and substitution for class variables df-sbc 3047. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3048. (Contributed by NM, 31-Dec-2016.) |
Ref | Expression |
---|---|
dfsbcq2 | ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . 2 ⊢ (y = A → (y ∈ {x ∣ φ} ↔ A ∈ {x ∣ φ})) | |
2 | df-clab 2340 | . 2 ⊢ (y ∈ {x ∣ φ} ↔ [y / x]φ) | |
3 | df-sbc 3047 | . . 3 ⊢ ([̣A / x]̣φ ↔ A ∈ {x ∣ φ}) | |
4 | 3 | bicomi 193 | . 2 ⊢ (A ∈ {x ∣ φ} ↔ [̣A / x]̣φ) |
5 | 1, 2, 4 | 3bitr3g 278 | 1 ⊢ (y = A → ([y / x]φ ↔ [̣A / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [wsb 1648 ∈ wcel 1710 {cab 2339 [̣wsbc 3046 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-clab 2340 df-cleq 2346 df-clel 2349 df-sbc 3047 |
This theorem is referenced by: sbsbc 3050 sbc8g 3053 sbc2or 3054 sbceq1a 3056 sbc5 3070 sbcng 3086 sbcimg 3087 sbcan 3088 sbcang 3089 sbcor 3090 sbcorg 3091 sbcbig 3092 sbcal 3093 sbcalg 3094 sbcex2 3095 sbcexg 3096 sbc3ang 3104 sbcel1gv 3105 sbcel2gv 3106 sbctt 3108 sbcralt 3118 sbcralg 3120 sbcrexg 3121 sbcreug 3122 rspsbc 3124 rspesbca 3126 sbcel12g 3151 sbceqg 3152 csbifg 3690 iota4 4357 csbiotag 4371 csbopabg 4637 sbcbrg 4685 opelopabsb 4697 |
Copyright terms: Public domain | W3C validator |