New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iindif2 | GIF version |
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4020 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
iindif2 | ⊢ (A ≠ ∅ → ∩x ∈ A (B ∖ C) = (B ∖ ∪x ∈ A C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 3646 | . . . 4 ⊢ (A ≠ ∅ → (∀x ∈ A (y ∈ B ∧ ¬ y ∈ C) ↔ (y ∈ B ∧ ∀x ∈ A ¬ y ∈ C))) | |
2 | eldif 3222 | . . . . . 6 ⊢ (y ∈ (B ∖ C) ↔ (y ∈ B ∧ ¬ y ∈ C)) | |
3 | 2 | bicomi 193 | . . . . 5 ⊢ ((y ∈ B ∧ ¬ y ∈ C) ↔ y ∈ (B ∖ C)) |
4 | 3 | ralbii 2639 | . . . 4 ⊢ (∀x ∈ A (y ∈ B ∧ ¬ y ∈ C) ↔ ∀x ∈ A y ∈ (B ∖ C)) |
5 | ralnex 2625 | . . . . . 6 ⊢ (∀x ∈ A ¬ y ∈ C ↔ ¬ ∃x ∈ A y ∈ C) | |
6 | eliun 3974 | . . . . . 6 ⊢ (y ∈ ∪x ∈ A C ↔ ∃x ∈ A y ∈ C) | |
7 | 5, 6 | xchbinxr 302 | . . . . 5 ⊢ (∀x ∈ A ¬ y ∈ C ↔ ¬ y ∈ ∪x ∈ A C) |
8 | 7 | anbi2i 675 | . . . 4 ⊢ ((y ∈ B ∧ ∀x ∈ A ¬ y ∈ C) ↔ (y ∈ B ∧ ¬ y ∈ ∪x ∈ A C)) |
9 | 1, 4, 8 | 3bitr3g 278 | . . 3 ⊢ (A ≠ ∅ → (∀x ∈ A y ∈ (B ∖ C) ↔ (y ∈ B ∧ ¬ y ∈ ∪x ∈ A C))) |
10 | vex 2863 | . . . 4 ⊢ y ∈ V | |
11 | eliin 3975 | . . . 4 ⊢ (y ∈ V → (y ∈ ∩x ∈ A (B ∖ C) ↔ ∀x ∈ A y ∈ (B ∖ C))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (y ∈ ∩x ∈ A (B ∖ C) ↔ ∀x ∈ A y ∈ (B ∖ C)) |
13 | eldif 3222 | . . 3 ⊢ (y ∈ (B ∖ ∪x ∈ A C) ↔ (y ∈ B ∧ ¬ y ∈ ∪x ∈ A C)) | |
14 | 9, 12, 13 | 3bitr4g 279 | . 2 ⊢ (A ≠ ∅ → (y ∈ ∩x ∈ A (B ∖ C) ↔ y ∈ (B ∖ ∪x ∈ A C))) |
15 | 14 | eqrdv 2351 | 1 ⊢ (A ≠ ∅ → ∩x ∈ A (B ∖ C) = (B ∖ ∪x ∈ A C)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∀wral 2615 ∃wrex 2616 Vcvv 2860 ∖ cdif 3207 ∅c0 3551 ∪ciun 3970 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-iun 3972 df-iin 3973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |