NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3eqtr2i GIF version

Theorem 3eqtr2i 2379
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.)
Hypotheses
Ref Expression
3eqtr2i.1 A = B
3eqtr2i.2 C = B
3eqtr2i.3 C = D
Assertion
Ref Expression
3eqtr2i A = D

Proof of Theorem 3eqtr2i
StepHypRef Expression
1 3eqtr2i.1 . . 3 A = B
2 3eqtr2i.2 . . 3 C = B
31, 2eqtr4i 2376 . 2 A = C
4 3eqtr2i.3 . 2 C = D
53, 4eqtri 2373 1 A = D
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  indif  3498  dfrab3  3532  iunid  4022  inindif  4076  fnpm  6009
  Copyright terms: Public domain W3C validator