NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3eqtrri GIF version

Theorem 3eqtrri 2378
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtri.1 A = B
3eqtri.2 B = C
3eqtri.3 C = D
Assertion
Ref Expression
3eqtrri D = A

Proof of Theorem 3eqtrri
StepHypRef Expression
1 3eqtri.1 . . 3 A = B
2 3eqtri.2 . . 3 B = C
31, 2eqtri 2373 . 2 A = C
4 3eqtri.3 . 2 C = D
53, 4eqtr2i 2374 1 D = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  dfun4  3547  dfif5  3675  compldif  4070  opeq  4620  mucnc  6132  nnc3n3p2  6280
  Copyright terms: Public domain W3C validator