New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfrab3 | GIF version |
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfrab3 | ⊢ {x ∈ A ∣ φ} = (A ∩ {x ∣ φ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2624 | . 2 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
2 | inab 3523 | . 2 ⊢ ({x ∣ x ∈ A} ∩ {x ∣ φ}) = {x ∣ (x ∈ A ∧ φ)} | |
3 | abid2 2471 | . . 3 ⊢ {x ∣ x ∈ A} = A | |
4 | 3 | ineq1i 3454 | . 2 ⊢ ({x ∣ x ∈ A} ∩ {x ∣ φ}) = (A ∩ {x ∣ φ}) |
5 | 1, 2, 4 | 3eqtr2i 2379 | 1 ⊢ {x ∈ A ∣ φ} = (A ∩ {x ∣ φ}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: notrab 3533 dfrab3ss 3534 dfif3 3673 |
Copyright terms: Public domain | W3C validator |