New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtri | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtri.1 | ⊢ A = B |
eqtri.2 | ⊢ B = C |
Ref | Expression |
---|---|
eqtri | ⊢ A = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtri.1 | . 2 ⊢ A = B | |
2 | eqtri.2 | . . 3 ⊢ B = C | |
3 | 2 | eqeq2i 2363 | . 2 ⊢ (A = B ↔ A = C) |
4 | 1, 3 | mpbi 199 | 1 ⊢ A = C |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: eqtr2i 2374 eqtr3i 2375 eqtr4i 2376 3eqtri 2377 3eqtrri 2378 3eqtr2i 2379 cbvrab 2858 csb2 3139 cbvrabcsf 3202 difeq1 3247 difeq2 3248 symdifeq1 3249 symdifeq2 3250 difeq12i 3384 inrot 3471 dfun3 3494 dfin3 3495 invdif 3497 difundi 3508 difindi 3510 symdif1 3520 rabnc 3575 undif1 3626 ssdifin0 3632 dfif2 3665 dfif3 3673 dfif4 3674 dfif5 3675 ifbieq2i 3682 ifbieq12i 3684 pwjust 3724 snjust 3741 dfpr2 3750 difprsn1 3848 diftpsn3 3850 sspr 3870 sstp 3871 dfuni2 3894 intab 3957 intunsn 3966 rint0 3967 iunid 4022 viin 4026 iinrab 4029 iinrab2 4030 2iunin 4035 riin0 4040 uncompl 4075 inindif 4076 cokeq12i 4237 xpkexg 4289 pw1eqadj 4333 iotajust 4339 dfiota2 4341 dfiota4 4373 addcid1 4406 addcid2 4408 nnc0suc 4413 addc6 4419 nncaddccl 4420 nnsucelrlem3 4427 addcnnul 4454 ltfintr 4460 ltfintrilem1 4466 ncfinraise 4482 tfinnul 4492 tfinsuc 4499 tfin1c 4500 sucoddeven 4512 dfevenfin2 4513 dfoddfin2 4514 evenodddisj 4517 oddtfin 4519 nnadjoin 4521 sfindbl 4531 spfinex 4538 opeq12i 4584 phiun 4615 phialllem1 4617 phialllem2 4618 unopab 4639 dfid3 4769 elxpi 4801 csbxpg 4814 fconstopab 4816 inxp 4864 coeq12i 4881 dfrn3 4904 dmopab 4916 dmopab3 4918 dmxpin 4926 reseq12i 4933 dfima4 4953 rnopab 4968 rncoss 4973 rncoeq 4976 resundi 4982 resindi 4984 resopab 5000 resima2 5008 imadisj 5016 iniseg 5023 ndmima 5026 cnvin 5036 rnun 5037 imaundi 5040 cnvxp 5044 rnxp 5052 rnxpss 5054 dminxp 5062 dmpropg 5069 op1sta 5073 opswap 5075 op2nda 5077 resdmres 5079 coundi 5083 coundir 5084 funi 5138 funcnvuni 5162 funcnvres 5166 fnresdisj 5194 fv2 5325 dfimafn2 5368 fnimapr 5375 ressnop0 5437 fpr 5438 fvsnun1 5448 imauni 5466 rnsi 5522 resoprab 5582 ov 5596 ovigg 5597 ovg 5602 caov31 5638 caov42 5642 caovdilem 5644 caovmo 5646 cbvmpt 5677 mptpreima 5683 dmmpt 5684 dmmptss 5686 rnmpt 5687 mptfng 5689 fvmptg 5699 fvmpts 5702 fvmpt2i 5704 ovmpt4g 5711 ovmpt2x 5713 ovmpt2ga 5714 rnmpt2 5718 mptresid 5721 fvmptex 5722 f1od 5727 composefn 5819 cnvpprod 5842 rnpprod 5843 fvfullfun 5865 clos1conn 5880 clos1induct 5881 clos1basesuc 5883 dfec2 5949 ecidsn 5974 ecid 5990 pmvalg 6011 mapsn 6027 enadj 6061 nenpw1pwlem1 6085 mucnc 6132 mucass 6136 muc0 6143 1p1e2c 6156 2p1e3c 6157 tc2c 6167 fnce 6177 ce2 6193 ce2nc1 6194 ce2ncpw11c 6195 sbthlem1 6204 leconnnc 6219 tcfnex 6245 addcdi 6251 nmembers1lem1 6269 nmembers1 6272 nncdiv3 6278 nnc3n3p1 6279 nnc3n3p2 6280 nchoicelem2 6291 nchoicelem17 6306 frecexg 6313 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 frec0 6322 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |