NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iunid GIF version

Theorem iunid 4022
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid x A {x} = A
Distinct variable group:   x,A

Proof of Theorem iunid
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 df-sn 3742 . . . . 5 {x} = {y y = x}
2 equcom 1680 . . . . . 6 (y = xx = y)
32abbii 2466 . . . . 5 {y y = x} = {y x = y}
41, 3eqtri 2373 . . . 4 {x} = {y x = y}
54a1i 10 . . 3 (x A → {x} = {y x = y})
65iuneq2i 3988 . 2 x A {x} = x A {y x = y}
7 iunab 4013 . . 3 x A {y x = y} = {y x A x = y}
8 risset 2662 . . . 4 (y Ax A x = y)
98abbii 2466 . . 3 {y y A} = {y x A x = y}
10 abid2 2471 . . 3 {y y A} = A
117, 9, 103eqtr2i 2379 . 2 x A {y x = y} = A
126, 11eqtri 2373 1 x A {x} = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  {csn 3738  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-sn 3742  df-iun 3972
This theorem is referenced by:  iunxpconst  4820  uniqs  5985
  Copyright terms: Public domain W3C validator