| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iunid | GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪x ∈ A {x} = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 3742 | . . . . 5 ⊢ {x} = {y ∣ y = x} | |
| 2 | equcom 1680 | . . . . . 6 ⊢ (y = x ↔ x = y) | |
| 3 | 2 | abbii 2466 | . . . . 5 ⊢ {y ∣ y = x} = {y ∣ x = y} |
| 4 | 1, 3 | eqtri 2373 | . . . 4 ⊢ {x} = {y ∣ x = y} |
| 5 | 4 | a1i 10 | . . 3 ⊢ (x ∈ A → {x} = {y ∣ x = y}) |
| 6 | 5 | iuneq2i 3988 | . 2 ⊢ ∪x ∈ A {x} = ∪x ∈ A {y ∣ x = y} |
| 7 | iunab 4013 | . . 3 ⊢ ∪x ∈ A {y ∣ x = y} = {y ∣ ∃x ∈ A x = y} | |
| 8 | risset 2662 | . . . 4 ⊢ (y ∈ A ↔ ∃x ∈ A x = y) | |
| 9 | 8 | abbii 2466 | . . 3 ⊢ {y ∣ y ∈ A} = {y ∣ ∃x ∈ A x = y} |
| 10 | abid2 2471 | . . 3 ⊢ {y ∣ y ∈ A} = A | |
| 11 | 7, 9, 10 | 3eqtr2i 2379 | . 2 ⊢ ∪x ∈ A {y ∣ x = y} = A |
| 12 | 6, 11 | eqtri 2373 | 1 ⊢ ∪x ∈ A {x} = A |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 {csn 3738 ∪ciun 3970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-sn 3742 df-iun 3972 |
| This theorem is referenced by: iunxpconst 4820 uniqs 5985 |
| Copyright terms: Public domain | W3C validator |