NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3eqtr3a GIF version

Theorem 3eqtr3a 2409
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
Hypotheses
Ref Expression
3eqtr3a.1 A = B
3eqtr3a.2 (φA = C)
3eqtr3a.3 (φB = D)
Assertion
Ref Expression
3eqtr3a (φC = D)

Proof of Theorem 3eqtr3a
StepHypRef Expression
1 3eqtr3a.2 . 2 (φA = C)
2 3eqtr3a.1 . . 3 A = B
3 3eqtr3a.3 . . 3 (φB = D)
42, 3syl5eq 2397 . 2 (φA = D)
51, 4eqtr3d 2387 1 (φC = D)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  uneqin  3507
  Copyright terms: Public domain W3C validator