Proof of Theorem uneqin
Step | Hyp | Ref
| Expression |
1 | | eqimss 3324 |
. . . 4
⊢ ((A ∪ B) =
(A ∩ B) → (A
∪ B) ⊆ (A ∩
B)) |
2 | | unss 3438 |
. . . . 5
⊢ ((A ⊆ (A ∩ B) ∧ B ⊆ (A ∩
B)) ↔ (A ∪ B) ⊆ (A ∩
B)) |
3 | | ssin 3478 |
. . . . . . 7
⊢ ((A ⊆ A ∧ A ⊆ B) ↔ A
⊆ (A
∩ B)) |
4 | | sstr 3281 |
. . . . . . 7
⊢ ((A ⊆ A ∧ A ⊆ B) → A
⊆ B) |
5 | 3, 4 | sylbir 204 |
. . . . . 6
⊢ (A ⊆ (A ∩ B)
→ A ⊆ B) |
6 | | ssin 3478 |
. . . . . . 7
⊢ ((B ⊆ A ∧ B ⊆ B) ↔ B
⊆ (A
∩ B)) |
7 | | simpl 443 |
. . . . . . 7
⊢ ((B ⊆ A ∧ B ⊆ B) → B
⊆ A) |
8 | 6, 7 | sylbir 204 |
. . . . . 6
⊢ (B ⊆ (A ∩ B)
→ B ⊆ A) |
9 | 5, 8 | anim12i 549 |
. . . . 5
⊢ ((A ⊆ (A ∩ B) ∧ B ⊆ (A ∩
B)) → (A ⊆ B ∧ B ⊆ A)) |
10 | 2, 9 | sylbir 204 |
. . . 4
⊢ ((A ∪ B) ⊆ (A ∩
B) → (A ⊆ B ∧ B ⊆ A)) |
11 | 1, 10 | syl 15 |
. . 3
⊢ ((A ∪ B) =
(A ∩ B) → (A
⊆ B
∧ B ⊆ A)) |
12 | | eqss 3288 |
. . 3
⊢ (A = B ↔
(A ⊆
B ∧
B ⊆
A)) |
13 | 11, 12 | sylibr 203 |
. 2
⊢ ((A ∪ B) =
(A ∩ B) → A =
B) |
14 | | unidm 3408 |
. . . 4
⊢ (A ∪ A) =
A |
15 | | inidm 3465 |
. . . 4
⊢ (A ∩ A) =
A |
16 | 14, 15 | eqtr4i 2376 |
. . 3
⊢ (A ∪ A) =
(A ∩ A) |
17 | | uneq2 3413 |
. . 3
⊢ (A = B →
(A ∪ A) = (A ∪
B)) |
18 | | ineq2 3452 |
. . 3
⊢ (A = B →
(A ∩ A) = (A ∩
B)) |
19 | 16, 17, 18 | 3eqtr3a 2409 |
. 2
⊢ (A = B →
(A ∪ B) = (A ∩
B)) |
20 | 13, 19 | impbii 180 |
1
⊢ ((A ∪ B) =
(A ∩ B) ↔ A =
B) |