New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eq.1 | ⊢ A = B |
syl5eq.2 | ⊢ (φ → B = C) |
Ref | Expression |
---|---|
syl5eq | ⊢ (φ → A = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eq.1 | . . 3 ⊢ A = B | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → A = B) |
3 | syl5eq.2 | . 2 ⊢ (φ → B = C) | |
4 | 2, 3 | eqtrd 2385 | 1 ⊢ (φ → A = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: syl5req 2398 syl5eqr 2399 3eqtr3a 2409 3eqtr4g 2410 csbtt 3149 csbvarg 3164 csbie2g 3183 rabbi2dva 3464 disjssun 3609 difprsn2 3849 difsnid 3855 intsng 3962 riinn0 4041 iinxsng 4043 rintn0 4057 prprc2 4123 prprc1 4124 pw1eqadj 4333 iotaval 4351 iotanul 4355 nnsucelrlem4 4428 ssfin 4471 dmxp 4924 resabs1 4993 resabs2 4994 resopab2 5002 resiima 5013 imasn 5019 ndmima 5026 xpdisj1 5048 xpdisj2 5049 resdisj 5051 rnxp 5052 dfco2a 5082 cores2 5092 fnun 5190 fnresdisj 5194 fnima 5202 f1orescnv 5302 resdif 5307 f1ococnv2 5310 fvprc 5326 tz6.12-1 5345 tz6.12-2 5347 fnrnfv 5365 fvun 5379 fvun2 5381 ressnop0 5437 fvunsn 5445 fvsnun2 5449 fvpr1 5450 funiunfv 5468 f1oiso2 5501 resoprab2 5583 fnoprabg 5586 ovidig 5594 ov6g 5601 ovconst2 5612 ndmovg 5614 ndmovcl 5615 ndmov 5616 caovmo 5646 elovex12 5649 fvmptnf 5724 fntxp 5805 fnpprod 5844 map0b 6025 enpw1 6063 sbthlem1 6204 dflec2 6211 nchoicelem7 6296 |
Copyright terms: Public domain | W3C validator |