New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3eqtr4g | GIF version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 | ⊢ (φ → A = B) |
3eqtr4g.2 | ⊢ C = A |
3eqtr4g.3 | ⊢ D = B |
Ref | Expression |
---|---|
3eqtr4g | ⊢ (φ → C = D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 | . . 3 ⊢ C = A | |
2 | 3eqtr4g.1 | . . 3 ⊢ (φ → A = B) | |
3 | 1, 2 | syl5eq 2397 | . 2 ⊢ (φ → C = B) |
4 | 3eqtr4g.3 | . 2 ⊢ D = B | |
5 | 3, 4 | syl6eqr 2403 | 1 ⊢ (φ → C = D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: rabeqf 2852 csbeq1 3139 csbeq2d 3160 csbnestgf 3184 nineq1 3234 compleq 3243 difeq1 3246 difeq2 3247 symdifeq1 3248 symdifeq2 3249 uneq2 3412 ineq2 3451 dfrab3ss 3533 ifeq1 3666 ifeq2 3667 pweq 3725 sneq 3744 csbsng 3785 rabsn 3790 preq1 3799 preq2 3800 tpeq1 3808 tpeq2 3809 tpeq3 3810 csbunig 3899 unieq 3900 inteq 3929 iineq1 3983 iineq2 3986 dfiin2g 4000 iinrab 4028 iinin1 4037 iununi 4050 opkeq1 4059 opkeq2 4060 pw1eq 4143 cnvkeq 4215 ins2keq 4218 ins3keq 4219 imakeq1 4224 imakeq2 4225 cokeq1 4230 cokeq2 4231 p6eq 4238 sikeq 4241 imagekeq 4244 iotaeq 4347 iotabi 4348 addceq1 4383 addceq2 4384 ncfineq 4473 tfineq 4488 phieq 4570 opeq1 4578 opeq2 4579 proj1eq 4589 proj2eq 4590 opabbid 4624 xpeq1 4798 xpeq2 4799 csbxpg 4813 reseq1 4928 reseq2 4929 imaeq1 4937 imaeq2 4938 rneq 4956 csbrng 4966 csbresg 4976 resima2 5007 dmpropg 5068 cores 5084 cores2 5091 imain 5172 fveq1 5327 fveq2 5328 csbfv12g 5336 fvres 5342 fnsnfv 5373 fnimapr 5374 fvco2 5382 isoini2 5498 oveq 5529 oveq1 5530 oveq2 5531 oprabbid 5563 ovres 5602 mpteq12f 5655 mpt2eq123 5661 mpt2eq123dv 5663 mpt2eq3dva 5669 resmpt 5696 resmpt2 5697 f1od 5726 txpeq1 5779 txpeq2 5780 pprodeq1 5834 pprodeq2 5835 clos1eq1 5874 clos1eq2 5875 eceq1 5962 eceq2 5963 erth 5968 qseq1 5974 qseq2 5975 uniqs 5984 xpassen 6057 nceq 6108 tceq 6158 addcdi 6250 nchoicelem9 6297 freceq12 6311 |
Copyright terms: Public domain | W3C validator |