NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqtr3d GIF version

Theorem eqtr3d 2387
Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.)
Hypotheses
Ref Expression
eqtr3d.1 (φA = B)
eqtr3d.2 (φA = C)
Assertion
Ref Expression
eqtr3d (φB = C)

Proof of Theorem eqtr3d
StepHypRef Expression
1 eqtr3d.1 . . 3 (φA = B)
21eqcomd 2358 . 2 (φB = A)
3 eqtr3d.2 . 2 (φA = C)
42, 3eqtrd 2385 1 (φB = C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-cleq 2346
This theorem is referenced by:  3eqtr3d  2393  3eqtr3rd  2394  3eqtr3a  2409  uniintsn  3964  f00  5250  f1imacnv  5303  foimacnv  5304  fvsnun2  5449  oprssov  5604  caovmo  5646  fvfullfunlem3  5864  ecss  5967  uniqs2  5986  map0b  6025  enprmaplem3  6079  ncdisjun  6137  ncspw1eu  6160  addcdi  6251  nchoicelem17  6306
  Copyright terms: Public domain W3C validator