New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr3d | GIF version |
Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
Ref | Expression |
---|---|
eqtr3d.1 | ⊢ (φ → A = B) |
eqtr3d.2 | ⊢ (φ → A = C) |
Ref | Expression |
---|---|
eqtr3d | ⊢ (φ → B = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3d.1 | . . 3 ⊢ (φ → A = B) | |
2 | 1 | eqcomd 2358 | . 2 ⊢ (φ → B = A) |
3 | eqtr3d.2 | . 2 ⊢ (φ → A = C) | |
4 | 2, 3 | eqtrd 2385 | 1 ⊢ (φ → B = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr3d 2393 3eqtr3rd 2394 3eqtr3a 2409 uniintsn 3963 f00 5249 f1imacnv 5302 foimacnv 5303 fvsnun2 5448 oprssov 5603 caovmo 5645 fvfullfunlem3 5863 ecss 5966 uniqs2 5985 map0b 6024 enprmaplem3 6078 ncdisjun 6136 ncspw1eu 6159 addcdi 6250 nchoicelem17 6305 |
Copyright terms: Public domain | W3C validator |