New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr3d | GIF version |
Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
Ref | Expression |
---|---|
eqtr3d.1 | ⊢ (φ → A = B) |
eqtr3d.2 | ⊢ (φ → A = C) |
Ref | Expression |
---|---|
eqtr3d | ⊢ (φ → B = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3d.1 | . . 3 ⊢ (φ → A = B) | |
2 | 1 | eqcomd 2358 | . 2 ⊢ (φ → B = A) |
3 | eqtr3d.2 | . 2 ⊢ (φ → A = C) | |
4 | 2, 3 | eqtrd 2385 | 1 ⊢ (φ → B = C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr3d 2393 3eqtr3rd 2394 3eqtr3a 2409 uniintsn 3964 f00 5250 f1imacnv 5303 foimacnv 5304 fvsnun2 5449 oprssov 5604 caovmo 5646 fvfullfunlem3 5864 ecss 5967 uniqs2 5986 map0b 6025 enprmaplem3 6079 ncdisjun 6137 ncspw1eu 6160 addcdi 6251 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |