Step | Hyp | Ref
| Expression |
1 | | brsi 4762 |
. . . . . . 7
⊢ (x SI Fy ↔ ∃a∃b(x = {a} ∧ y = {b} ∧ aFb)) |
2 | | brsi 4762 |
. . . . . . 7
⊢ (x SI Fz ↔ ∃c∃d(x = {c} ∧ z = {d} ∧ cFd)) |
3 | 1, 2 | anbi12i 678 |
. . . . . 6
⊢ ((x SI Fy ∧ x SI Fz) ↔ (∃a∃b(x = {a} ∧ y = {b} ∧ aFb) ∧ ∃c∃d(x = {c} ∧ z = {d} ∧ cFd))) |
4 | | ee4anv 1915 |
. . . . . 6
⊢ (∃a∃b∃c∃d((x = {a} ∧ y = {b} ∧ aFb) ∧ (x = {c} ∧ z = {d} ∧ cFd)) ↔ (∃a∃b(x = {a} ∧ y = {b} ∧ aFb) ∧ ∃c∃d(x = {c} ∧ z = {d} ∧ cFd))) |
5 | 3, 4 | bitr4i 243 |
. . . . 5
⊢ ((x SI Fy ∧ x SI Fz) ↔ ∃a∃b∃c∃d((x = {a} ∧ y = {b} ∧ aFb) ∧ (x = {c} ∧ z = {d} ∧ cFd))) |
6 | | fununiq 5518 |
. . . . . . . . . . 11
⊢ ((Fun F ∧ aFb ∧ aFd) → b =
d) |
7 | 6 | 3exp 1150 |
. . . . . . . . . 10
⊢ (Fun F → (aFb → (aFd → b =
d))) |
8 | | breq1 4643 |
. . . . . . . . . . . . . . . 16
⊢ (a = c →
(aFd ↔
cFd)) |
9 | 8 | bicomd 192 |
. . . . . . . . . . . . . . 15
⊢ (a = c →
(cFd ↔
aFd)) |
10 | 9 | adantr 451 |
. . . . . . . . . . . . . 14
⊢ ((a = c ∧ z = {d}) → (cFd ↔ aFd)) |
11 | | eqeq2 2362 |
. . . . . . . . . . . . . . . 16
⊢ (z = {d} →
({b} = z ↔ {b} =
{d})) |
12 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ b ∈
V |
13 | 12 | sneqb 3877 |
. . . . . . . . . . . . . . . 16
⊢ ({b} = {d} ↔
b = d) |
14 | 11, 13 | syl6bb 252 |
. . . . . . . . . . . . . . 15
⊢ (z = {d} →
({b} = z ↔ b =
d)) |
15 | 14 | adantl 452 |
. . . . . . . . . . . . . 14
⊢ ((a = c ∧ z = {d}) → ({b}
= z ↔ b = d)) |
16 | 10, 15 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ ((a = c ∧ z = {d}) → ((cFd → {b} =
z) ↔ (aFd → b =
d))) |
17 | 16 | biimprcd 216 |
. . . . . . . . . . . 12
⊢ ((aFd → b =
d) → ((a = c ∧ z = {d}) → (cFd → {b} =
z))) |
18 | 17 | exp3a 425 |
. . . . . . . . . . 11
⊢ ((aFd → b =
d) → (a = c →
(z = {d} → (cFd → {b} =
z)))) |
19 | 18 | 3impd 1165 |
. . . . . . . . . 10
⊢ ((aFd → b =
d) → ((a = c ∧ z = {d} ∧ cFd) → {b} =
z)) |
20 | 7, 19 | syl6 29 |
. . . . . . . . 9
⊢ (Fun F → (aFb → ((a =
c ∧
z = {d}
∧ cFd) → {b} =
z))) |
21 | | eqeq1 2359 |
. . . . . . . . . . . . . . . . 17
⊢ (x = {a} →
(x = {c} ↔ {a} =
{c})) |
22 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ a ∈
V |
23 | 22 | sneqb 3877 |
. . . . . . . . . . . . . . . . 17
⊢ ({a} = {c} ↔
a = c) |
24 | 21, 23 | syl6bb 252 |
. . . . . . . . . . . . . . . 16
⊢ (x = {a} →
(x = {c} ↔ a =
c)) |
25 | 24 | 3anbi1d 1256 |
. . . . . . . . . . . . . . 15
⊢ (x = {a} →
((x = {c} ∧ z = {d} ∧ cFd) ↔
(a = c
∧ z =
{d} ∧
cFd))) |
26 | 25 | adantr 451 |
. . . . . . . . . . . . . 14
⊢ ((x = {a} ∧ y = {b}) → ((x =
{c} ∧
z = {d}
∧ cFd) ↔ (a =
c ∧
z = {d}
∧ cFd))) |
27 | | eqeq1 2359 |
. . . . . . . . . . . . . . 15
⊢ (y = {b} →
(y = z
↔ {b} = z)) |
28 | 27 | adantl 452 |
. . . . . . . . . . . . . 14
⊢ ((x = {a} ∧ y = {b}) → (y =
z ↔ {b} = z)) |
29 | 26, 28 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ ((x = {a} ∧ y = {b}) → (((x
= {c} ∧
z = {d}
∧ cFd) → y =
z) ↔ ((a = c ∧ z = {d} ∧ cFd) → {b} =
z))) |
30 | 29 | imbi2d 307 |
. . . . . . . . . . . 12
⊢ ((x = {a} ∧ y = {b}) → ((aFb → ((x =
{c} ∧
z = {d}
∧ cFd) → y =
z)) ↔ (aFb → ((a =
c ∧
z = {d}
∧ cFd) → {b} =
z)))) |
31 | 30 | biimprcd 216 |
. . . . . . . . . . 11
⊢ ((aFb → ((a =
c ∧
z = {d}
∧ cFd) → {b} =
z)) → ((x = {a} ∧ y = {b}) → (aFb → ((x =
{c} ∧
z = {d}
∧ cFd) → y =
z)))) |
32 | 31 | exp3a 425 |
. . . . . . . . . 10
⊢ ((aFb → ((a =
c ∧
z = {d}
∧ cFd) → {b} =
z)) → (x = {a} →
(y = {b} → (aFb → ((x =
{c} ∧
z = {d}
∧ cFd) → y =
z))))) |
33 | 32 | 3impd 1165 |
. . . . . . . . 9
⊢ ((aFb → ((a =
c ∧
z = {d}
∧ cFd) → {b} =
z)) → ((x = {a} ∧ y = {b} ∧ aFb) → ((x =
{c} ∧
z = {d}
∧ cFd) → y =
z))) |
34 | 20, 33 | syl 15 |
. . . . . . . 8
⊢ (Fun F → ((x =
{a} ∧
y = {b}
∧ aFb) → ((x =
{c} ∧
z = {d}
∧ cFd) → y =
z))) |
35 | 34 | imp3a 420 |
. . . . . . 7
⊢ (Fun F → (((x =
{a} ∧
y = {b}
∧ aFb) ∧ (x = {c} ∧ z = {d} ∧ cFd)) → y =
z)) |
36 | 35 | exlimdvv 1637 |
. . . . . 6
⊢ (Fun F → (∃c∃d((x = {a} ∧ y = {b} ∧ aFb) ∧ (x = {c} ∧ z = {d} ∧ cFd)) → y =
z)) |
37 | 36 | exlimdvv 1637 |
. . . . 5
⊢ (Fun F → (∃a∃b∃c∃d((x = {a} ∧ y = {b} ∧ aFb) ∧ (x = {c} ∧ z = {d} ∧ cFd)) → y =
z)) |
38 | 5, 37 | syl5bi 208 |
. . . 4
⊢ (Fun F → ((x SI Fy ∧ x SI Fz) → y =
z)) |
39 | 38 | alrimiv 1631 |
. . 3
⊢ (Fun F → ∀z((x SI Fy ∧ x SI Fz) → y =
z)) |
40 | 39 | alrimivv 1632 |
. 2
⊢ (Fun F → ∀x∀y∀z((x SI Fy ∧ x SI Fz) → y =
z)) |
41 | | dffun2 5120 |
. 2
⊢ (Fun SI F ↔ ∀x∀y∀z((x SI Fy ∧ x SI Fz) → y =
z)) |
42 | 40, 41 | sylibr 203 |
1
⊢ (Fun F → Fun SI
F) |