NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl6rbbr GIF version

Theorem syl6rbbr 255
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.)
Hypotheses
Ref Expression
syl6rbbr.1 (φ → (ψχ))
syl6rbbr.2 (θχ)
Assertion
Ref Expression
syl6rbbr (φ → (θψ))

Proof of Theorem syl6rbbr
StepHypRef Expression
1 syl6rbbr.1 . 2 (φ → (ψχ))
2 syl6rbbr.2 . . 3 (θχ)
32bicomi 193 . 2 (χθ)
41, 3syl6rbb 253 1 (φ → (θψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  baib  871  reu8  3033  sbc6g  3072  r19.28z  3643  r19.28zv  3646  r19.37zv  3647  r19.45zv  3648  r19.27z  3649  r19.27zv  3650  r19.36zv  3651  ralidm  3654  ralsns  3764  rexsns  3765  ssunsn2  3866  iunconst  3978  iinconst  3979  ssofss  4077  snelpwg  4115  opres  4979  cores  5085  funssres  5145  fncnv  5159  dff1o5  5296  fvres  5343  funimass4  5369  dffo3  5423  funfvima  5460  eloprabga  5579  eqncg  6127  ncseqnc  6129  eqtc  6162  tcfnex  6245  nchoicelem11  6300  nchoicelem16  6305  nchoicelem18  6307  canncb  6333
  Copyright terms: Public domain W3C validator