New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6rbbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl6rbbr.1 | ⊢ (φ → (ψ ↔ χ)) |
syl6rbbr.2 | ⊢ (θ ↔ χ) |
Ref | Expression |
---|---|
syl6rbbr | ⊢ (φ → (θ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6rbbr.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | syl6rbbr.2 | . . 3 ⊢ (θ ↔ χ) | |
3 | 2 | bicomi 193 | . 2 ⊢ (χ ↔ θ) |
4 | 1, 3 | syl6rbb 253 | 1 ⊢ (φ → (θ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: baib 871 reu8 3033 sbc6g 3072 r19.28z 3643 r19.28zv 3646 r19.37zv 3647 r19.45zv 3648 r19.27z 3649 r19.27zv 3650 r19.36zv 3651 ralidm 3654 ralsns 3764 rexsns 3765 ssunsn2 3866 iunconst 3978 iinconst 3979 ssofss 4077 snelpwg 4115 opres 4979 cores 5085 funssres 5145 fncnv 5159 dff1o5 5296 fvres 5343 funimass4 5369 dffo3 5423 funfvima 5460 eloprabga 5579 eqncg 6127 ncseqnc 6129 eqtc 6162 tcfnex 6245 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 canncb 6333 |
Copyright terms: Public domain | W3C validator |