| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbal | GIF version | ||
| Description: Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbal | ⊢ ([z / y]∀xφ ↔ ∀x[z / y]φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a16gb 2050 | . . . . 5 ⊢ (∀x x = z → (φ ↔ ∀xφ)) | |
| 2 | 1 | sbimi 1652 | . . . 4 ⊢ ([z / y]∀x x = z → [z / y](φ ↔ ∀xφ)) |
| 3 | sbequ5 2031 | . . . 4 ⊢ ([z / y]∀x x = z ↔ ∀x x = z) | |
| 4 | sbbi 2071 | . . . 4 ⊢ ([z / y](φ ↔ ∀xφ) ↔ ([z / y]φ ↔ [z / y]∀xφ)) | |
| 5 | 2, 3, 4 | 3imtr3i 256 | . . 3 ⊢ (∀x x = z → ([z / y]φ ↔ [z / y]∀xφ)) |
| 6 | a16gb 2050 | . . 3 ⊢ (∀x x = z → ([z / y]φ ↔ ∀x[z / y]φ)) | |
| 7 | 5, 6 | bitr3d 246 | . 2 ⊢ (∀x x = z → ([z / y]∀xφ ↔ ∀x[z / y]φ)) |
| 8 | sbal1 2126 | . 2 ⊢ (¬ ∀x x = z → ([z / y]∀xφ ↔ ∀x[z / y]φ)) | |
| 9 | 7, 8 | pm2.61i 156 | 1 ⊢ ([z / y]∀xφ ↔ ∀x[z / y]φ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wal 1540 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: sbex 2128 sbalv 2129 sbcal 3094 sbcalg 3095 |
| Copyright terms: Public domain | W3C validator |