NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  hblem GIF version

Theorem hblem 2458
Description: Change the free variable of a hypothesis builder. Lemma for nfcrii 2483. (Contributed by NM, 5-Aug-1993.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypothesis
Ref Expression
hblem.1 (y Ax y A)
Assertion
Ref Expression
hblem (z Ax z A)
Distinct variable groups:   y,A   x,z
Allowed substitution hints:   A(x,z)

Proof of Theorem hblem
StepHypRef Expression
1 hblem.1 . . 3 (y Ax y A)
21hbsb 2110 . 2 ([z / y]y Ax[z / y]y A)
3 clelsb1 2455 . 2 ([z / y]y Az A)
43albii 1566 . 2 (x[z / y]y Ax z A)
52, 3, 43imtr3i 256 1 (z Ax z A)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  [wsb 1648   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349
This theorem is referenced by:  nfcrii  2483
  Copyright terms: Public domain W3C validator