New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ad2ant3 | GIF version |
Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
3ad2ant.1 | ⊢ (φ → χ) |
Ref | Expression |
---|---|
3ad2ant3 | ⊢ ((ψ ∧ θ ∧ φ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2ant.1 | . . 3 ⊢ (φ → χ) | |
2 | 1 | adantl 452 | . 2 ⊢ ((θ ∧ φ) → χ) |
3 | 2 | 3adant1 973 | 1 ⊢ ((ψ ∧ θ ∧ φ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: simp3l 983 simp3r 984 simp31 991 simp32 992 simp33 993 simp3ll 1026 simp3lr 1027 simp3rl 1028 simp3rr 1029 simp3l1 1060 simp3l2 1061 simp3l3 1062 simp3r1 1063 simp3r2 1064 simp3r3 1065 simp31l 1078 simp31r 1079 simp32l 1080 simp32r 1081 simp33l 1082 simp33r 1083 simp311 1102 simp312 1103 simp313 1104 simp321 1105 simp322 1106 simp323 1107 simp331 1108 simp332 1109 simp333 1110 3anim123i 1137 3jaao 1249 ceqsalt 2882 ceqsralt 2883 vtoclgft 2906 nnsucelrlem3 4427 nnsucelr 4429 ltfintri 4467 ssfin 4471 tfin11 4494 tfinltfinlem1 4501 sfintfin 4533 sfin111 4537 funprg 5150 fnprg 5154 fvun1 5380 ider 5944 ssetpov 5945 eqer 5962 elmapg 6013 elpmg 6014 ener 6040 enadj 6061 enprmaplem6 6082 nenpw1pwlem2 6086 elce 6176 addlec 6209 lenc 6224 taddc 6230 |
Copyright terms: Public domain | W3C validator |