New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3sstr4i | GIF version |
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4.1 | ⊢ A ⊆ B |
3sstr4.2 | ⊢ C = A |
3sstr4.3 | ⊢ D = B |
Ref | Expression |
---|---|
3sstr4i | ⊢ C ⊆ D |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4.1 | . 2 ⊢ A ⊆ B | |
2 | 3sstr4.2 | . . 3 ⊢ C = A | |
3 | 3sstr4.3 | . . 3 ⊢ D = B | |
4 | 2, 3 | sseq12i 3298 | . 2 ⊢ (C ⊆ D ↔ A ⊆ B) |
5 | 1, 4 | mpbir 200 | 1 ⊢ C ⊆ D |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: rncoss 4973 imassrn 5010 rnin 5038 ssoprab2i 5581 |
Copyright terms: Public domain | W3C validator |