NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sseq12i GIF version

Theorem sseq12i 3298
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1 A = B
sseq12i.2 C = D
Assertion
Ref Expression
sseq12i (A CB D)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2 A = B
2 sseq12i.2 . 2 C = D
3 sseq12 3295 . 2 ((A = B C = D) → (A CB D))
41, 2, 3mp2an 653 1 (A CB D)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wss 3258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260
This theorem is referenced by:  3sstr3i  3310  3sstr4i  3311  3sstr3g  3312  3sstr4g  3313  ss2rab  3343
  Copyright terms: Public domain W3C validator