New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 4exbidv | GIF version |
Description: Formula-building rule for 4 existential quantifiers (deduction rule). (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
4exbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
4exbidv | ⊢ (φ → (∃x∃y∃z∃wψ ↔ ∃x∃y∃z∃wχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4exbidv.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | 2exbidv 1628 | . 2 ⊢ (φ → (∃z∃wψ ↔ ∃z∃wχ)) |
3 | 2 | 2exbidv 1628 | 1 ⊢ (φ → (∃x∃y∃z∃wψ ↔ ∃x∃y∃z∃wχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: ceqsex8v 2901 opbrop 4842 ov3 5600 |
Copyright terms: Public domain | W3C validator |