NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  4exbidv GIF version

Theorem 4exbidv 1630
Description: Formula-building rule for 4 existential quantifiers (deduction rule). (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
4exbidv.1 (φ → (ψχ))
Assertion
Ref Expression
4exbidv (φ → (xyzwψxyzwχ))
Distinct variable groups:   φ,x   φ,y   φ,z   φ,w
Allowed substitution hints:   ψ(x,y,z,w)   χ(x,y,z,w)

Proof of Theorem 4exbidv
StepHypRef Expression
1 4exbidv.1 . . 3 (φ → (ψχ))
212exbidv 1628 . 2 (φ → (zwψzwχ))
322exbidv 1628 1 (φ → (xyzwψxyzwχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  ceqsex8v  2901  opbrop  4842  ov3  5600
  Copyright terms: Public domain W3C validator