New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3exbidv | GIF version |
Description: Formula-building rule for 3 existential quantifiers (deduction rule). (Contributed by NM, 1-May-1995.) |
Ref | Expression |
---|---|
3exbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
3exbidv | ⊢ (φ → (∃x∃y∃zψ ↔ ∃x∃y∃zχ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exbidv.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | exbidv 1626 | . 2 ⊢ (φ → (∃zψ ↔ ∃zχ)) |
3 | 2 | 2exbidv 1628 | 1 ⊢ (φ → (∃x∃y∃zψ ↔ ∃x∃y∃zχ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: ceqsex6v 2900 ins2keq 4219 ins3keq 4220 opkelins2kg 4252 opkelins3kg 4253 oprabid 5551 eloprabga 5579 |
Copyright terms: Public domain | W3C validator |