NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3exbidv GIF version

Theorem 3exbidv 1629
Description: Formula-building rule for 3 existential quantifiers (deduction rule). (Contributed by NM, 1-May-1995.)
Hypothesis
Ref Expression
3exbidv.1 (φ → (ψχ))
Assertion
Ref Expression
3exbidv (φ → (xyzψxyzχ))
Distinct variable groups:   φ,x   φ,y   φ,z
Allowed substitution hints:   ψ(x,y,z)   χ(x,y,z)

Proof of Theorem 3exbidv
StepHypRef Expression
1 3exbidv.1 . . 3 (φ → (ψχ))
21exbidv 1626 . 2 (φ → (zψzχ))
322exbidv 1628 1 (φ → (xyzψxyzχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  ceqsex6v  2900  ins2keq  4219  ins3keq  4220  opkelins2kg  4252  opkelins3kg  4253  oprabid  5551  eloprabga  5579
  Copyright terms: Public domain W3C validator