New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abeq1i | GIF version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 31-Jul-1994.) |
Ref | Expression |
---|---|
abeqri.1 | ⊢ {x ∣ φ} = A |
Ref | Expression |
---|---|
abeq1i | ⊢ (φ ↔ x ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2341 | . 2 ⊢ (x ∈ {x ∣ φ} ↔ φ) | |
2 | abeqri.1 | . . 3 ⊢ {x ∣ φ} = A | |
3 | 2 | eleq2i 2417 | . 2 ⊢ (x ∈ {x ∣ φ} ↔ x ∈ A) |
4 | 1, 3 | bitr3i 242 | 1 ⊢ (φ ↔ x ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |