New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abid | GIF version |
Description: Simplification of class abstraction notation when the free and bound variables are identical. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abid | ⊢ (x ∈ {x ∣ φ} ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clab 2340 | . 2 ⊢ (x ∈ {x ∣ φ} ↔ [x / x]φ) | |
2 | sbid 1922 | . 2 ⊢ ([x / x]φ ↔ φ) | |
3 | 1, 2 | bitri 240 | 1 ⊢ (x ∈ {x ∣ φ} ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 |
This theorem is referenced by: abeq2 2459 abeq2i 2461 abeq1i 2462 abeq2d 2463 abid2f 2515 elabgt 2983 elabgf 2984 ralab2 3002 rexab2 3004 sbccsbg 3165 sbccsb2g 3166 ss2ab 3335 abn0 3569 tpid3g 3832 eluniab 3904 elintab 3938 iunab 4013 iinab 4028 sniota 4370 eqop 4612 dfswap2 4742 eloprabga 5579 |
Copyright terms: Public domain | W3C validator |