New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq2i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
eleq2i | ⊢ (C ∈ A ↔ C ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ A = B | |
2 | eleq2 2414 | . 2 ⊢ (A = B → (C ∈ A ↔ C ∈ B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C ∈ A ↔ C ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12i 2418 eleqtri 2425 eleq2s 2445 hbxfreq 2456 abeq2i 2460 abeq1i 2461 nfceqi 2485 raleqbii 2644 rexeqbii 2645 rabeq2i 2856 elab2g 2987 elrabf 2993 elrab2 2996 cbvsbc 3074 elcomplg 3218 elin 3219 elun 3220 eldif 3221 elsymdif 3223 elin2 3446 dfnul2 3552 noel 3554 eltpg 3769 tpid3g 3831 elunirab 3904 elintrab 3938 elopk 4129 elpw1 4144 eluni1g 4172 opkelcokg 4261 opkelimagekg 4271 cokrelk 4284 peano1 4402 peano2 4403 elfin 4420 el0c 4421 nnsucelr 4428 nndisjeq 4429 ssfin 4470 eqtfinrelk 4486 nnadjoin 4520 spfinsfincl 4539 proj1op 4600 proj2op 4601 eqop 4611 brabsb 4698 brabga 4701 el1st 4729 elswap 4740 dfswap2 4741 elxp 4801 elcnv 4889 elrn 4896 eldm 4898 elima1c 4947 brelrn 4960 elimasn 5019 rninxp 5060 elfv 5326 nfvres 5352 fv01 5354 fvopab3g 5386 f0cli 5418 funfvima 5459 elunirn 5470 eloprabga 5578 ovidig 5593 ndmovcl 5614 ndmov 5615 fvmptex 5721 elfix 5787 otelins2 5791 otelins3 5792 oqelins4 5794 otsnelsi3 5805 composeex 5820 clos1conn 5879 clos1basesucg 5884 elec 5964 elncs 6119 elnc 6125 el2c 6191 tcfnex 6244 csucex 6259 nchoicelem10 6298 nchoicelem18 6306 |
Copyright terms: Public domain | W3C validator |