New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eleq2i | GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
eleq2i | ⊢ (C ∈ A ↔ C ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1i.1 | . 2 ⊢ A = B | |
2 | eleq2 2414 | . 2 ⊢ (A = B → (C ∈ A ↔ C ∈ B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C ∈ A ↔ C ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: eleq12i 2418 eleqtri 2425 eleq2s 2445 hbxfreq 2457 abeq2i 2461 abeq1i 2462 nfceqi 2486 raleqbii 2645 rexeqbii 2646 rabeq2i 2857 elab2g 2988 elrabf 2994 elrab2 2997 cbvsbc 3075 elcomplg 3219 elin 3220 elun 3221 eldif 3222 elsymdif 3224 elin2 3447 dfnul2 3553 noel 3555 eltpg 3770 tpid3g 3832 elunirab 3905 elintrab 3939 elopk 4130 elpw1 4145 eluni1g 4173 opkelcokg 4262 opkelimagekg 4272 cokrelk 4285 peano1 4403 peano2 4404 elfin 4421 el0c 4422 nnsucelr 4429 nndisjeq 4430 ssfin 4471 eqtfinrelk 4487 nnadjoin 4521 spfinsfincl 4540 proj1op 4601 proj2op 4602 eqop 4612 brabsb 4699 brabga 4702 el1st 4730 elswap 4741 dfswap2 4742 elxp 4802 elcnv 4890 elrn 4897 eldm 4899 elima1c 4948 brelrn 4961 elimasn 5020 rninxp 5061 elfv 5327 nfvres 5353 fv01 5355 fvopab3g 5387 f0cli 5419 funfvima 5460 elunirn 5471 eloprabga 5579 ovidig 5594 ndmovcl 5615 ndmov 5616 fvmptex 5722 elfix 5788 otelins2 5792 otelins3 5793 oqelins4 5795 otsnelsi3 5806 composeex 5821 clos1conn 5880 clos1basesucg 5885 elec 5965 elncs 6120 elnc 6126 el2c 6192 tcfnex 6245 csucex 6260 nchoicelem10 6299 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |