New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abeq2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 | ⊢ A = {x ∣ φ} |
Ref | Expression |
---|---|
abeq2i | ⊢ (x ∈ A ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 ⊢ A = {x ∣ φ} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (x ∈ A ↔ x ∈ {x ∣ φ}) |
3 | abid 2341 | . 2 ⊢ (x ∈ {x ∣ φ} ↔ φ) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (x ∈ A ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: rabid 2787 vex 2862 csbco 3145 csbnestgf 3184 pwss 3736 elsn 3748 snsspw 3877 1cex 4142 elp6 4263 unipw1 4325 phi011lem1 4598 fconstopab 4815 fvfullfunlem3 5863 fvfullfun 5864 pmvalg 6010 enpw1pw 6075 |
Copyright terms: Public domain | W3C validator |