New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > abeq2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 3-Apr-1996.) |
Ref | Expression |
---|---|
abeqi.1 | ⊢ A = {x ∣ φ} |
Ref | Expression |
---|---|
abeq2i | ⊢ (x ∈ A ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqi.1 | . . 3 ⊢ A = {x ∣ φ} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (x ∈ A ↔ x ∈ {x ∣ φ}) |
3 | abid 2341 | . 2 ⊢ (x ∈ {x ∣ φ} ↔ φ) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (x ∈ A ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 {cab 2339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: rabid 2788 vex 2863 csbco 3146 csbnestgf 3185 pwss 3737 elsn 3749 snsspw 3878 1cex 4143 elp6 4264 unipw1 4326 phi011lem1 4599 fconstopab 4816 fvfullfunlem3 5864 fvfullfun 5865 pmvalg 6011 enpw1pw 6076 |
Copyright terms: Public domain | W3C validator |