New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > foco | GIF version |
Description: Composition of onto functions. (Contributed by set.mm contributors, 22-Mar-2006.) |
Ref | Expression |
---|---|
foco | ⊢ ((F:B–onto→C ∧ G:A–onto→B) → (F ∘ G):A–onto→C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fco 5232 | . . . 4 ⊢ ((F:B–→C ∧ G:A–→B) → (F ∘ G):A–→C) | |
2 | 1 | ad2ant2r 727 | . . 3 ⊢ (((F:B–→C ∧ ran F = C) ∧ (G:A–→B ∧ ran G = B)) → (F ∘ G):A–→C) |
3 | fdm 5227 | . . . . . . 7 ⊢ (F:B–→C → dom F = B) | |
4 | eqtr3 2372 | . . . . . . 7 ⊢ ((dom F = B ∧ ran G = B) → dom F = ran G) | |
5 | 3, 4 | sylan 457 | . . . . . 6 ⊢ ((F:B–→C ∧ ran G = B) → dom F = ran G) |
6 | rncoeq 4976 | . . . . . . . 8 ⊢ (dom F = ran G → ran (F ∘ G) = ran F) | |
7 | 6 | eqeq1d 2361 | . . . . . . 7 ⊢ (dom F = ran G → (ran (F ∘ G) = C ↔ ran F = C)) |
8 | 7 | biimpar 471 | . . . . . 6 ⊢ ((dom F = ran G ∧ ran F = C) → ran (F ∘ G) = C) |
9 | 5, 8 | sylan 457 | . . . . 5 ⊢ (((F:B–→C ∧ ran G = B) ∧ ran F = C) → ran (F ∘ G) = C) |
10 | 9 | an32s 779 | . . . 4 ⊢ (((F:B–→C ∧ ran F = C) ∧ ran G = B) → ran (F ∘ G) = C) |
11 | 10 | adantrl 696 | . . 3 ⊢ (((F:B–→C ∧ ran F = C) ∧ (G:A–→B ∧ ran G = B)) → ran (F ∘ G) = C) |
12 | 2, 11 | jca 518 | . 2 ⊢ (((F:B–→C ∧ ran F = C) ∧ (G:A–→B ∧ ran G = B)) → ((F ∘ G):A–→C ∧ ran (F ∘ G) = C)) |
13 | dffo2 5274 | . . 3 ⊢ (F:B–onto→C ↔ (F:B–→C ∧ ran F = C)) | |
14 | dffo2 5274 | . . 3 ⊢ (G:A–onto→B ↔ (G:A–→B ∧ ran G = B)) | |
15 | 13, 14 | anbi12i 678 | . 2 ⊢ ((F:B–onto→C ∧ G:A–onto→B) ↔ ((F:B–→C ∧ ran F = C) ∧ (G:A–→B ∧ ran G = B))) |
16 | dffo2 5274 | . 2 ⊢ ((F ∘ G):A–onto→C ↔ ((F ∘ G):A–→C ∧ ran (F ∘ G) = C)) | |
17 | 12, 15, 16 | 3imtr4i 257 | 1 ⊢ ((F:B–onto→C ∧ G:A–onto→B) → (F ∘ G):A–onto→C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∘ ccom 4722 dom cdm 4773 ran crn 4774 –→wf 4778 –onto→wfo 4780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 |
This theorem is referenced by: f1oco 5309 |
Copyright terms: Public domain | W3C validator |