NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  foco GIF version

Theorem foco 5280
Description: Composition of onto functions. (Contributed by set.mm contributors, 22-Mar-2006.)
Assertion
Ref Expression
foco ((F:BontoC G:AontoB) → (F G):AontoC)

Proof of Theorem foco
StepHypRef Expression
1 fco 5232 . . . 4 ((F:B–→C G:A–→B) → (F G):A–→C)
21ad2ant2r 727 . . 3 (((F:B–→C ran F = C) (G:A–→B ran G = B)) → (F G):A–→C)
3 fdm 5227 . . . . . . 7 (F:B–→C → dom F = B)
4 eqtr3 2372 . . . . . . 7 ((dom F = B ran G = B) → dom F = ran G)
53, 4sylan 457 . . . . . 6 ((F:B–→C ran G = B) → dom F = ran G)
6 rncoeq 4976 . . . . . . . 8 (dom F = ran G → ran (F G) = ran F)
76eqeq1d 2361 . . . . . . 7 (dom F = ran G → (ran (F G) = C ↔ ran F = C))
87biimpar 471 . . . . . 6 ((dom F = ran G ran F = C) → ran (F G) = C)
95, 8sylan 457 . . . . 5 (((F:B–→C ran G = B) ran F = C) → ran (F G) = C)
109an32s 779 . . . 4 (((F:B–→C ran F = C) ran G = B) → ran (F G) = C)
1110adantrl 696 . . 3 (((F:B–→C ran F = C) (G:A–→B ran G = B)) → ran (F G) = C)
122, 11jca 518 . 2 (((F:B–→C ran F = C) (G:A–→B ran G = B)) → ((F G):A–→C ran (F G) = C))
13 dffo2 5274 . . 3 (F:BontoC ↔ (F:B–→C ran F = C))
14 dffo2 5274 . . 3 (G:AontoB ↔ (G:A–→B ran G = B))
1513, 14anbi12i 678 . 2 ((F:BontoC G:AontoB) ↔ ((F:B–→C ran F = C) (G:A–→B ran G = B)))
16 dffo2 5274 . 2 ((F G):AontoC ↔ ((F G):A–→C ran (F G) = C))
1712, 15, 163imtr4i 257 1 ((F:BontoC G:AontoB) → (F G):AontoC)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   ccom 4722  dom cdm 4773  ran crn 4774  –→wf 4778  ontowfo 4780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792  df-fo 4794
This theorem is referenced by:  f1oco  5309
  Copyright terms: Public domain W3C validator