| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > aecoms-o | GIF version | ||
| Description: A commutation rule for identical variable specifiers. Version of aecoms 1947 using ax-10o . (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| alequcoms-o.1 | ⊢ (∀x x = y → φ) |
| Ref | Expression |
|---|---|
| aecoms-o | ⊢ (∀y y = x → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aecom-o 2151 | . 2 ⊢ (∀y y = x → ∀x x = y) | |
| 2 | alequcoms-o.1 | . 2 ⊢ (∀x x = y → φ) | |
| 3 | 1, 2 | syl 15 | 1 ⊢ (∀y y = x → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-10o 2139 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: hbae-o 2153 dral1-o 2154 dvelimf-o 2180 aev-o 2182 ax11indalem 2197 ax11inda2ALT 2198 |
| Copyright terms: Public domain | W3C validator |