New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hbae-o | GIF version |
Description: All variables are effectively bound in an identical variable specifier. Version of hbae 1953 using ax-10o 2139. (Contributed by NM, 5-Aug-1993.) (Proof modification is disccouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbae-o | ⊢ (∀x x = y → ∀z∀x x = y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 2135 | . . . . 5 ⊢ (∀x x = y → x = y) | |
2 | ax-12o 2142 | . . . . 5 ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (x = y → ∀z x = y))) | |
3 | 1, 2 | syl7 63 | . . . 4 ⊢ (¬ ∀z z = x → (¬ ∀z z = y → (∀x x = y → ∀z x = y))) |
4 | ax-10o 2139 | . . . . 5 ⊢ (∀x x = z → (∀x x = y → ∀z x = y)) | |
5 | 4 | aecoms-o 2152 | . . . 4 ⊢ (∀z z = x → (∀x x = y → ∀z x = y)) |
6 | ax-10o 2139 | . . . . . . 7 ⊢ (∀x x = y → (∀x x = y → ∀y x = y)) | |
7 | 6 | pm2.43i 43 | . . . . . 6 ⊢ (∀x x = y → ∀y x = y) |
8 | ax-10o 2139 | . . . . . 6 ⊢ (∀y y = z → (∀y x = y → ∀z x = y)) | |
9 | 7, 8 | syl5 28 | . . . . 5 ⊢ (∀y y = z → (∀x x = y → ∀z x = y)) |
10 | 9 | aecoms-o 2152 | . . . 4 ⊢ (∀z z = y → (∀x x = y → ∀z x = y)) |
11 | 3, 5, 10 | pm2.61ii 157 | . . 3 ⊢ (∀x x = y → ∀z x = y) |
12 | 11 | a5i-o 2150 | . 2 ⊢ (∀x x = y → ∀x∀z x = y) |
13 | ax-7 1734 | . 2 ⊢ (∀x∀z x = y → ∀z∀x x = y) | |
14 | 12, 13 | syl 15 | 1 ⊢ (∀x x = y → ∀z∀x x = y) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-7 1734 ax-4 2135 ax-5o 2136 ax-6o 2137 ax-10o 2139 ax-12o 2142 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: dral1-o 2154 hbnae-o 2179 dral2-o 2181 aev-o 2182 |
Copyright terms: Public domain | W3C validator |