Step | Hyp | Ref
| Expression |
1 | | hbae-o 2153 |
. 2
⊢ (∀x x = y →
∀z∀x x = y) |
2 | | hbae-o 2153 |
. . . 4
⊢ (∀x x = y →
∀t∀x x = y) |
3 | | ax-8 1675 |
. . . . 5
⊢ (x = t →
(x = y
→ t = y)) |
4 | 3 | spimv 1990 |
. . . 4
⊢ (∀x x = y →
t = y) |
5 | 2, 4 | alrimih 1565 |
. . 3
⊢ (∀x x = y →
∀t
t = y) |
6 | | ax-8 1675 |
. . . . . . . 8
⊢ (y = u →
(y = t
→ u = t)) |
7 | | equcomi 1679 |
. . . . . . . 8
⊢ (u = t →
t = u) |
8 | 6, 7 | syl6 29 |
. . . . . . 7
⊢ (y = u →
(y = t
→ t = u)) |
9 | 8 | spimv 1990 |
. . . . . 6
⊢ (∀y y = t →
t = u) |
10 | 9 | aecoms-o 2152 |
. . . . 5
⊢ (∀t t = y →
t = u) |
11 | 10 | a5i-o 2150 |
. . . 4
⊢ (∀t t = y →
∀t
t = u) |
12 | | hbae-o 2153 |
. . . . 5
⊢ (∀t t = u →
∀v∀t t = u) |
13 | | ax-8 1675 |
. . . . . 6
⊢ (t = v →
(t = u
→ v = u)) |
14 | 13 | spimv 1990 |
. . . . 5
⊢ (∀t t = u →
v = u) |
15 | 12, 14 | alrimih 1565 |
. . . 4
⊢ (∀t t = u →
∀v
v = u) |
16 | | aecom-o 2151 |
. . . 4
⊢ (∀v v = u →
∀u
u = v) |
17 | 11, 15, 16 | 3syl 18 |
. . 3
⊢ (∀t t = y →
∀u
u = v) |
18 | | ax-8 1675 |
. . . 4
⊢ (u = w →
(u = v
→ w = v)) |
19 | 18 | spimv 1990 |
. . 3
⊢ (∀u u = v →
w = v) |
20 | 5, 17, 19 | 3syl 18 |
. 2
⊢ (∀x x = y →
w = v) |
21 | 1, 20 | alrimih 1565 |
1
⊢ (∀x x = y →
∀z
w = v) |