Step | Hyp | Ref
| Expression |
1 | | ssel2 3269 |
. . . . . . . 8
⊢ ((C ⊆ A ∧ y ∈ C) → y
∈ A) |
2 | 1 | anim1i 551 |
. . . . . . 7
⊢ (((C ⊆ A ∧ y ∈ C) ∧ D ∈ A) → (y
∈ A ∧ D ∈ A)) |
3 | 2 | an32s 779 |
. . . . . 6
⊢ (((C ⊆ A ∧ D ∈ A) ∧ y ∈ C) → (y
∈ A ∧ D ∈ A)) |
4 | | isorel 5490 |
. . . . . . 7
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → (yRD ↔ (H
‘y)S(H
‘D))) |
5 | | fvex 5340 |
. . . . . . . . 9
⊢ (H ‘y)
∈ V |
6 | | breq1 4643 |
. . . . . . . . 9
⊢ (x = (H
‘y) → (xS(H ‘D)
↔ (H ‘y)S(H ‘D))) |
7 | 5, 6 | ceqsexv 2895 |
. . . . . . . 8
⊢ (∃x(x = (H
‘y) ∧ xS(H
‘D)) ↔ (H ‘y)S(H ‘D)) |
8 | | eqcom 2355 |
. . . . . . . . . . 11
⊢ (x = (H
‘y) ↔ (H ‘y) =
x) |
9 | | isof1o 5489 |
. . . . . . . . . . . . 13
⊢ (H Isom R,
S (A,
B) → H:A–1-1-onto→B) |
10 | | f1ofn 5289 |
. . . . . . . . . . . . 13
⊢ (H:A–1-1-onto→B →
H Fn A) |
11 | 9, 10 | syl 15 |
. . . . . . . . . . . 12
⊢ (H Isom R,
S (A,
B) → H Fn A) |
12 | | simpl 443 |
. . . . . . . . . . . 12
⊢ ((y ∈ A ∧ D ∈ A) → y
∈ A) |
13 | | fnbrfvb 5359 |
. . . . . . . . . . . 12
⊢ ((H Fn A ∧ y ∈ A) →
((H ‘y) = x ↔
yHx)) |
14 | 11, 12, 13 | syl2an 463 |
. . . . . . . . . . 11
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → ((H ‘y) =
x ↔ yHx)) |
15 | 8, 14 | syl5bb 248 |
. . . . . . . . . 10
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → (x = (H
‘y) ↔ yHx)) |
16 | 15 | anbi1d 685 |
. . . . . . . . 9
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → ((x = (H
‘y) ∧ xS(H
‘D)) ↔ (yHx ∧ xS(H ‘D)))) |
17 | 16 | exbidv 1626 |
. . . . . . . 8
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → (∃x(x = (H
‘y) ∧ xS(H
‘D)) ↔ ∃x(yHx ∧ xS(H ‘D)))) |
18 | 7, 17 | syl5bbr 250 |
. . . . . . 7
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → ((H ‘y)S(H ‘D)
↔ ∃x(yHx ∧ xS(H
‘D)))) |
19 | 4, 18 | bitrd 244 |
. . . . . 6
⊢ ((H Isom R,
S (A,
B) ∧
(y ∈
A ∧
D ∈
A)) → (yRD ↔ ∃x(yHx ∧ xS(H ‘D)))) |
20 | 3, 19 | sylan2 460 |
. . . . 5
⊢ ((H Isom R,
S (A,
B) ∧
((C ⊆
A ∧
D ∈
A) ∧
y ∈
C)) → (yRD ↔ ∃x(yHx ∧ xS(H ‘D)))) |
21 | 20 | anassrs 629 |
. . . 4
⊢ (((H Isom R,
S (A,
B) ∧
(C ⊆
A ∧
D ∈
A)) ∧
y ∈
C) → (yRD ↔ ∃x(yHx ∧ xS(H ‘D)))) |
22 | 21 | rexbidva 2632 |
. . 3
⊢ ((H Isom R,
S (A,
B) ∧
(C ⊆
A ∧
D ∈
A)) → (∃y ∈ C yRD ↔ ∃y ∈ C ∃x(yHx ∧ xS(H ‘D)))) |
23 | | elin 3220 |
. . . . . 6
⊢ (y ∈ (C ∩ (◡R
“ {D})) ↔ (y ∈ C ∧ y ∈ (◡R
“ {D}))) |
24 | | eliniseg 5021 |
. . . . . . 7
⊢ (y ∈ (◡R
“ {D}) ↔ yRD) |
25 | 24 | anbi2i 675 |
. . . . . 6
⊢ ((y ∈ C ∧ y ∈ (◡R
“ {D})) ↔ (y ∈ C ∧ yRD)) |
26 | 23, 25 | bitri 240 |
. . . . 5
⊢ (y ∈ (C ∩ (◡R
“ {D})) ↔ (y ∈ C ∧ yRD)) |
27 | 26 | exbii 1582 |
. . . 4
⊢ (∃y y ∈ (C ∩ (◡R
“ {D})) ↔ ∃y(y ∈ C ∧ yRD)) |
28 | | neq0 3561 |
. . . 4
⊢ (¬ (C ∩ (◡R
“ {D})) = ∅ ↔ ∃y y ∈ (C ∩ (◡R
“ {D}))) |
29 | | df-rex 2621 |
. . . 4
⊢ (∃y ∈ C yRD ↔ ∃y(y ∈ C ∧ yRD)) |
30 | 27, 28, 29 | 3bitr4i 268 |
. . 3
⊢ (¬ (C ∩ (◡R
“ {D})) = ∅ ↔ ∃y ∈ C yRD) |
31 | | elima 4755 |
. . . . . . 7
⊢ (x ∈ (H “ C)
↔ ∃y ∈ C yHx) |
32 | | eliniseg 5021 |
. . . . . . 7
⊢ (x ∈ (◡S
“ {(H ‘D)}) ↔ xS(H ‘D)) |
33 | 31, 32 | anbi12i 678 |
. . . . . 6
⊢ ((x ∈ (H “ C)
∧ x ∈ (◡S
“ {(H ‘D)})) ↔ (∃y ∈ C yHx ∧ xS(H ‘D))) |
34 | | elin 3220 |
. . . . . 6
⊢ (x ∈ ((H “ C)
∩ (◡S “ {(H
‘D)})) ↔ (x ∈ (H “ C)
∧ x ∈ (◡S
“ {(H ‘D)}))) |
35 | | r19.41v 2765 |
. . . . . 6
⊢ (∃y ∈ C (yHx ∧ xS(H ‘D))
↔ (∃y ∈ C yHx ∧ xS(H
‘D))) |
36 | 33, 34, 35 | 3bitr4i 268 |
. . . . 5
⊢ (x ∈ ((H “ C)
∩ (◡S “ {(H
‘D)})) ↔ ∃y ∈ C (yHx ∧ xS(H ‘D))) |
37 | 36 | exbii 1582 |
. . . 4
⊢ (∃x x ∈ ((H “ C)
∩ (◡S “ {(H
‘D)})) ↔ ∃x∃y ∈ C (yHx ∧ xS(H ‘D))) |
38 | | neq0 3561 |
. . . 4
⊢ (¬ ((H “ C)
∩ (◡S “ {(H
‘D)})) = ∅ ↔ ∃x x ∈ ((H “ C)
∩ (◡S “ {(H
‘D)}))) |
39 | | rexcom4 2879 |
. . . 4
⊢ (∃y ∈ C ∃x(yHx ∧ xS(H ‘D))
↔ ∃x∃y ∈ C (yHx ∧ xS(H
‘D))) |
40 | 37, 38, 39 | 3bitr4i 268 |
. . 3
⊢ (¬ ((H “ C)
∩ (◡S “ {(H
‘D)})) = ∅ ↔ ∃y ∈ C ∃x(yHx ∧ xS(H ‘D))) |
41 | 22, 30, 40 | 3bitr4g 279 |
. 2
⊢ ((H Isom R,
S (A,
B) ∧
(C ⊆
A ∧
D ∈
A)) → (¬ (C ∩ (◡R
“ {D})) = ∅ ↔ ¬ ((H “ C)
∩ (◡S “ {(H
‘D)})) = ∅)) |
42 | 41 | con4bid 284 |
1
⊢ ((H Isom R,
S (A,
B) ∧
(C ⊆
A ∧
D ∈
A)) → ((C ∩ (◡R
“ {D})) = ∅ ↔ ((H
“ C) ∩ (◡S
“ {(H ‘D)})) = ∅)) |