| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ax10lem3 | GIF version | ||
| Description: Lemma for ax10 1944. Similar to ax-10 2140 but with distinct variables. (Contributed by NM, 25-Jul-2015.) |
| Ref | Expression |
|---|---|
| ax10lem3 | ⊢ (∀x x = y → ∀y y = x) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax10lem2 1937 | . 2 ⊢ (∀x x = y → ∀x x = z) | |
| 2 | ax10lem1 1936 | . . . 4 ⊢ (∀x x = z → ∀w w = z) | |
| 3 | ax10lem2 1937 | . . . 4 ⊢ (∀w w = z → ∀w w = x) | |
| 4 | 2, 3 | syl 15 | . . 3 ⊢ (∀x x = z → ∀w w = x) |
| 5 | ax10lem1 1936 | . . 3 ⊢ (∀w w = x → ∀y y = x) | |
| 6 | 4, 5 | syl 15 | . 2 ⊢ (∀x x = z → ∀y y = x) |
| 7 | 1, 6 | syl 15 | 1 ⊢ (∀x x = y → ∀y y = x) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: dvelimv 1939 |
| Copyright terms: Public domain | W3C validator |