Step | Hyp | Ref
| Expression |
1 | | ax9v 1655 |
. 2
⊢ ¬ ∀z ¬
z = x |
2 | | df-ex 1542 |
. . 3
⊢ (∃z z = x ↔
¬ ∀z ¬ z =
x) |
3 | | dveeq2 1940 |
. . . . . . . 8
⊢ (¬ ∀y y = x →
(z = x
→ ∀y z = x)) |
4 | 3 | imp 418 |
. . . . . . 7
⊢ ((¬ ∀y y = x ∧ z = x) → ∀y z = x) |
5 | | ax10lem6 1943 |
. . . . . . . 8
⊢ (∀x x = y →
(∀y
z = x
→ ∀x z = x)) |
6 | | equcomi 1679 |
. . . . . . . . 9
⊢ (z = x →
x = z) |
7 | 6 | alimi 1559 |
. . . . . . . 8
⊢ (∀x z = x →
∀x
x = z) |
8 | 5, 7 | syl6 29 |
. . . . . . 7
⊢ (∀x x = y →
(∀y
z = x
→ ∀x x = z)) |
9 | | ax10lem5 1942 |
. . . . . . 7
⊢ (∀x x = z →
∀y
y = x) |
10 | 4, 8, 9 | syl56 30 |
. . . . . 6
⊢ (∀x x = y →
((¬ ∀y y = x ∧ z = x) →
∀y
y = x)) |
11 | 10 | exp3acom23 1372 |
. . . . 5
⊢ (∀x x = y →
(z = x
→ (¬ ∀y y = x → ∀y y = x))) |
12 | | pm2.18 102 |
. . . . 5
⊢ ((¬ ∀y y = x →
∀y
y = x)
→ ∀y y = x) |
13 | 11, 12 | syl6 29 |
. . . 4
⊢ (∀x x = y →
(z = x
→ ∀y y = x)) |
14 | 13 | exlimdv 1636 |
. . 3
⊢ (∀x x = y →
(∃z
z = x
→ ∀y y = x)) |
15 | 2, 14 | syl5bir 209 |
. 2
⊢ (∀x x = y →
(¬ ∀z ¬ z =
x → ∀y y = x)) |
16 | 1, 15 | mpi 16 |
1
⊢ (∀x x = y →
∀y
y = x) |