NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax10lem6 GIF version

Theorem ax10lem6 1943
Description: Lemma for ax10 1944. Similar to ax10o 1952 but with reversed antecedent. (Contributed by NM, 25-Jul-2015.)
Assertion
Ref Expression
ax10lem6 (y y = x → (xφyφ))

Proof of Theorem ax10lem6
StepHypRef Expression
1 ax-11 1746 . . 3 (y = x → (xφy(y = xφ)))
21sps 1754 . 2 (y y = x → (xφy(y = xφ)))
3 pm2.27 35 . . 3 (y = x → ((y = xφ) → φ))
43al2imi 1561 . 2 (y y = x → (y(y = xφ) → yφ))
52, 4syld 40 1 (y y = x → (xφyφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by:  ax10  1944
  Copyright terms: Public domain W3C validator