| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ax10lem5 | GIF version | ||
| Description: Lemma for ax10 1944. Change free and bound variables. (Contributed by NM, 22-Jul-2015.) |
| Ref | Expression |
|---|---|
| ax10lem5 | ⊢ (∀z z = w → ∀y y = x) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax10lem1 1936 | . . . 4 ⊢ (∀z z = w → ∀v v = w) | |
| 2 | ax10lem4 1941 | . . . 4 ⊢ (∀v v = w → ∀u u = v) | |
| 3 | 1, 2 | syl 15 | . . 3 ⊢ (∀z z = w → ∀u u = v) |
| 4 | ax10lem1 1936 | . . 3 ⊢ (∀u u = v → ∀x x = v) | |
| 5 | 3, 4 | syl 15 | . 2 ⊢ (∀z z = w → ∀x x = v) |
| 6 | ax10lem4 1941 | . 2 ⊢ (∀x x = v → ∀y y = x) | |
| 7 | 5, 6 | syl 15 | 1 ⊢ (∀z z = w → ∀y y = x) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: ax10 1944 a16g 1945 aev 1991 |
| Copyright terms: Public domain | W3C validator |