| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > chvarv | GIF version | ||
| Description: Implicit substitution of y for x into a theorem. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| chv.1 | ⊢ (x = y → (φ ↔ ψ)) |
| chv.2 | ⊢ φ |
| Ref | Expression |
|---|---|
| chvarv | ⊢ ψ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chv.1 | . . 3 ⊢ (x = y → (φ ↔ ψ)) | |
| 2 | 1 | spv 1998 | . 2 ⊢ (∀xφ → ψ) |
| 3 | chv.2 | . 2 ⊢ φ | |
| 4 | 2, 3 | mpg 1548 | 1 ⊢ ψ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
| This theorem is referenced by: axext3 2336 |
| Copyright terms: Public domain | W3C validator |