NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  chvarv GIF version

Theorem chvarv 2013
Description: Implicit substitution of y for x into a theorem. (Contributed by NM, 20-Apr-1994.)
Hypotheses
Ref Expression
chv.1 (x = y → (φψ))
chv.2 φ
Assertion
Ref Expression
chvarv ψ
Distinct variable group:   ψ,x
Allowed substitution hints:   φ(x,y)   ψ(y)

Proof of Theorem chvarv
StepHypRef Expression
1 chv.1 . . 3 (x = y → (φψ))
21spv 1998 . 2 (xφψ)
3 chv.2 . 2 φ
42, 3mpg 1548 1 ψ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  axext3  2336
  Copyright terms: Public domain W3C validator