New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > chvarv | GIF version |
Description: Implicit substitution of y for x into a theorem. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
chv.1 | ⊢ (x = y → (φ ↔ ψ)) |
chv.2 | ⊢ φ |
Ref | Expression |
---|---|
chvarv | ⊢ ψ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chv.1 | . . 3 ⊢ (x = y → (φ ↔ ψ)) | |
2 | 1 | spv 1998 | . 2 ⊢ (∀xφ → ψ) |
3 | chv.2 | . 2 ⊢ φ | |
4 | 2, 3 | mpg 1548 | 1 ⊢ ψ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: axext3 2336 |
Copyright terms: Public domain | W3C validator |