New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > axext3 | GIF version |
Description: A generalization of the Axiom of Extensionality in which x and y need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
axext3 | ⊢ (∀z(z ∈ x ↔ z ∈ y) → x = y) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 1715 | . . . . 5 ⊢ (w = x → (z ∈ w ↔ z ∈ x)) | |
2 | 1 | bibi1d 310 | . . . 4 ⊢ (w = x → ((z ∈ w ↔ z ∈ y) ↔ (z ∈ x ↔ z ∈ y))) |
3 | 2 | albidv 1625 | . . 3 ⊢ (w = x → (∀z(z ∈ w ↔ z ∈ y) ↔ ∀z(z ∈ x ↔ z ∈ y))) |
4 | equequ1 1684 | . . 3 ⊢ (w = x → (w = y ↔ x = y)) | |
5 | 3, 4 | imbi12d 311 | . 2 ⊢ (w = x → ((∀z(z ∈ w ↔ z ∈ y) → w = y) ↔ (∀z(z ∈ x ↔ z ∈ y) → x = y))) |
6 | ax-ext 2334 | . 2 ⊢ (∀z(z ∈ w ↔ z ∈ y) → w = y) | |
7 | 5, 6 | chvarv 2013 | 1 ⊢ (∀z(z ∈ x ↔ z ∈ y) → x = y) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: axext4 2337 |
Copyright terms: Public domain | W3C validator |