New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spv | GIF version |
Description: Specialization, using implicit substitution. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
spv | ⊢ (∀xφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (x = y → (φ ↔ ψ)) | |
2 | 1 | biimpd 198 | . 2 ⊢ (x = y → (φ → ψ)) |
3 | 2 | spimv 1990 | 1 ⊢ (∀xφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: chvarv 2013 ax10-16 2190 ru 3046 sfintfin 4533 spfinsfincl 4540 |
Copyright terms: Public domain | W3C validator |