New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvex4v | GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cbvex4v.1 | ⊢ ((x = v ∧ y = u) → (φ ↔ ψ)) |
cbvex4v.2 | ⊢ ((z = f ∧ w = g) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
cbvex4v | ⊢ (∃x∃y∃z∃wφ ↔ ∃v∃u∃f∃gχ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex4v.1 | . . . 4 ⊢ ((x = v ∧ y = u) → (φ ↔ ψ)) | |
2 | 1 | 2exbidv 1628 | . . 3 ⊢ ((x = v ∧ y = u) → (∃z∃wφ ↔ ∃z∃wψ)) |
3 | 2 | cbvex2v 2007 | . 2 ⊢ (∃x∃y∃z∃wφ ↔ ∃v∃u∃z∃wψ) |
4 | cbvex4v.2 | . . . 4 ⊢ ((z = f ∧ w = g) → (ψ ↔ χ)) | |
5 | 4 | cbvex2v 2007 | . . 3 ⊢ (∃z∃wψ ↔ ∃f∃gχ) |
6 | 5 | 2exbii 1583 | . 2 ⊢ (∃v∃u∃z∃wψ ↔ ∃v∃u∃f∃gχ) |
7 | 3, 6 | bitri 240 | 1 ⊢ (∃x∃y∃z∃wφ ↔ ∃v∃u∃f∃gχ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |