New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedth GIF version

Theorem dedth 3703
 Description: Weak deduction theorem that eliminates a hypothesis φ, making it become an antecedent. We assume that a proof exists for φ when the class variable A is replaced with a specific class B. The hypothesis χ should be assigned to the inference, and the inference's hypothesis eliminated with elimhyp 3710. If the inference has other hypotheses with class variable A, these can be kept by assigning keephyp 3716 to them. For more information, see the Deduction Theorem http://us.metamath.org/mpeuni/mmdeduction.html 3716. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
dedth.1 (A = if(φ, A, B) → (ψχ))
dedth.2 χ
Assertion
Ref Expression
dedth (φψ)

Proof of Theorem dedth
StepHypRef Expression
1 dedth.2 . 2 χ
2 iftrue 3668 . . . 4 (φ → if(φ, A, B) = A)
32eqcomd 2358 . . 3 (φA = if(φ, A, B))
4 dedth.1 . . 3 (A = if(φ, A, B) → (ψχ))
53, 4syl 15 . 2 (φ → (ψχ))
61, 5mpbiri 224 1 (φψ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   = wceq 1642   ifcif 3662 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3663 This theorem is referenced by:  dedth2h  3704  dedth3h  3705
 Copyright terms: Public domain W3C validator